
What is the pOH of $0.1$M KB (salt of weak acid and strong base) at ${\text{2}}{{\text{5}}^{\text{o}}}{\text{C}}$? (Given ${\text{p}}{{\text{K}}_{\text{b}}}$of ${{\text{B}}^ - }$ = $7$)
Answer
551.4k+ views
Hint:We have to determine the pOH so, we will write the dissociation of the base in water. Then we will draw the ICE (initial, change, and equilibrium concentration) followed by the equilibrium constant expression. So, we can determine the concentration of base. Then by using the pOH formula we will determine the pOH.
Complete solution:
We will determine the ${{\text{K}}_{\text{b}}}$as follows:
${\text{p}}{{\text{K}}_{\text{b}}}\, = - {\text{log}}\,{{\text{K}}_{\text{b}}}$
Where,
${{\text{K}}_{\text{b}}}$is the base dissociation constant.
On substituting $7$ for ${\text{p}}{{\text{K}}_{\text{b}}}$.
$7\, = - \operatorname{lo} {\text{g}}\,\,{{\text{K}}_{\text{b}}}$
$\,{{\text{K}}_{\text{b}}}\, = \,1 \times {10^{ - 7}}\,$
KB is the salt of weak acid and strong base. The dissociation of base in water is shown as follows:
${{\text{B}}^ - }\, + \,{{\text{H}}_{\text{2}}}{\text{O}} \to {\text{BH}}\,{\text{ + }}\,{\text{O}}{{\text{H}}^ - }$
Now we will write the ICE chart,
${{\text{B}}^ - }\, + \,{{\text{H}}_{\text{2}}}{\text{O}} \to {\text{BH}}\,{\text{ + }}\,{\text{O}}{{\text{H}}^ - }$
Initial conc. $0.1\,\,\,\,\,\,\, \to \,\,\,\,\,\,\,{\text{0}}\,\,\,{\text{ + }}\,\,\,\,0$
As water is in excess we can neglect the change in concentration of water.
Change $ - {\text{x}}\,\,\, + 0\,\,\,\, \to \,\,\,\,\,\,\,{\text{x}}\,\,\,{\text{ + }}\,\,\,\,{\text{x}}$
Equi. Conc. $0.1 - {\text{x}}\,\,\,\,\,\,\, \to \,\,\,\,\,\,\,{\text{x}}\,\,\,{\text{ + }}\,\,\,\,{\text{x}}$
Now we have to determine the concentration of hydroxide ions so, we will write the equilibrium constant for the above reaction,
\[{{\text{K}}_{\text{b}}}{\text{ = }}\,\dfrac{{\left[ {{\text{BH}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{B}}^ - }} \right]}}\,\]
On substituting $1 \times {10^{ - 7}}\,$ for \[{{\text{K}}_{\text{b}}}\], x for \[\left[ {{\text{BH}}} \right]\]and \[\left[ {{\text{O}}{{\text{H}}^ - }} \right]\] and $0.1 - {\text{x}}$ for \[\left[ {{{\text{B}}^ - }} \right]\],
\[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 7}}{\text{ = }}\,\dfrac{{\left[ {\text{x}} \right]\left[ {\text{x}} \right]}}{{\left[ {0.1 - {\text{x}}\,} \right]}}\,\]
As the value of dissociation constant of base is very less means base dissociation is very small so, we can assume that \[0.1 - {\text{x}} \approx \,{\text{0}}{\text{.1}}\] So,
\[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 7}}{\text{ = }}\,\dfrac{{\left[ {\text{x}} \right]\left[ {\text{x}} \right]}}{{\left[ {0.1\,} \right]}}\,\]
\[{{\text{x}}^2}\, = \,{\text{1}} \times {\text{1}}{{\text{0}}^{ - 7}} \times 0.1\,\]
\[{{\text{x}}^2}\, = \,{\text{1}} \times {\text{1}}{{\text{0}}^{ - 8}}\]
\[{\text{x}}\, = \sqrt {\,{\text{1}} \times {\text{1}}{{\text{0}}^{ - 8}}} \]
\[{\text{x}}\, = {\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\]
So, the concentration of hydroxide ions is \[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\]
The formula to calculate the pOH is as follows:
\[{\text{pOH}}\,\,{\text{ = }}\, - \,{\text{log }}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
On substituting \[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\] for hydroxide \[{\text{O}}{{\text{H}}^ - }\] concentration.
\[{\text{pOH}}\,\,{\text{ = }}\, - \,{\text{log }}\left[ {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}} \right]\]
\[{\text{pOH}}\,\,{\text{ = }}\,4\,{\text{log}}\,{\text{10}}\]
\[{\text{pOH}}\,\,{\text{ = }}\,4\]
So, the pOH is\[4\].
Note:We can also determine the pOH as follows:
We calculated in above solution that $\,{{\text{K}}_{\text{b}}}\, = \,1 \times {10^{ - 7}}\,$.
Now, the relation between acid dissociation constant and base dissociation constant is,
${{\text{K}}_{\text{a}}}{ \times}\,\,{{\text{K}}_{\text{b}}}\,{\text{ = }}\,{{\text{K}}_{\text{w}}}$
Where,
${{\text{K}}_{\text{a}}}$ is the acid dissociation constant
${{\text{K}}_{\text{b}}}$ is the base dissociation constant
${{\text{K}}_{\text{w}}}$ is the ionic product of water whose value is ${10^{ - 14}}$.
${{\text{K}}_{\text{a}}}{ \times }\,\,{{\text{K}}_{\text{b}}}\,{\text{ = }}\,{10^{ - {\text{14}}}}$
So,
${{\text{K}}_{\text{a}}}{ \times }\,\,1 \times {10^{ - 7}}\,{\text{ = }}\,{10^{ - {\text{14}}}}$
${{\text{K}}_{\text{a}}}\,{\text{ = }}\,\,1 \times {10^{ - 7}}$
The formula to calculate the hydroxide ion concentration from acid dissociation constant is as follows:
${\text{O}}{{\text{H}}^ - }\, = \,\sqrt {\dfrac{{{{\text{K}}_{\text{w}}}{\text{C}}}}{{{{\text{K}}_{\text{a}}}}}} $
Where,
C is the concentration of base.
On substituting $0.1$ M for C, $\,1 \times {10^{ - 7}}$ for ${{\text{K}}_{\text{a}}}$, and ${10^{ - {\text{14}}}}$ for ${{\text{K}}_{\text{w}}}$,
${\text{O}}{{\text{H}}^ - }\, = \,\sqrt {\dfrac{{\,{{10}^{ - 14}}\, \times 0.1}}{{\,1 \times {{10}^{ - 7}}}}} $
${\text{O}}{{\text{H}}^ - }\, = \,\sqrt {1 \times {{10}^{ - 8}}} $
${\text{O}}{{\text{H}}^ - }\, = \,1 \times {10^{ - 4}}$
On substituting \[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\] for hydroxide \[{\text{O}}{{\text{H}}^ - }\] concentration.
\[{\text{pOH}}\,\,{\text{ = }}\, - \,{\text{log }}\left[ {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}} \right]\]
\[{\text{pOH}}\,\,{\text{ = }}\,4\]
So, the pOH is\[4\].
Complete solution:
We will determine the ${{\text{K}}_{\text{b}}}$as follows:
${\text{p}}{{\text{K}}_{\text{b}}}\, = - {\text{log}}\,{{\text{K}}_{\text{b}}}$
Where,
${{\text{K}}_{\text{b}}}$is the base dissociation constant.
On substituting $7$ for ${\text{p}}{{\text{K}}_{\text{b}}}$.
$7\, = - \operatorname{lo} {\text{g}}\,\,{{\text{K}}_{\text{b}}}$
$\,{{\text{K}}_{\text{b}}}\, = \,1 \times {10^{ - 7}}\,$
KB is the salt of weak acid and strong base. The dissociation of base in water is shown as follows:
${{\text{B}}^ - }\, + \,{{\text{H}}_{\text{2}}}{\text{O}} \to {\text{BH}}\,{\text{ + }}\,{\text{O}}{{\text{H}}^ - }$
Now we will write the ICE chart,
${{\text{B}}^ - }\, + \,{{\text{H}}_{\text{2}}}{\text{O}} \to {\text{BH}}\,{\text{ + }}\,{\text{O}}{{\text{H}}^ - }$
Initial conc. $0.1\,\,\,\,\,\,\, \to \,\,\,\,\,\,\,{\text{0}}\,\,\,{\text{ + }}\,\,\,\,0$
As water is in excess we can neglect the change in concentration of water.
Change $ - {\text{x}}\,\,\, + 0\,\,\,\, \to \,\,\,\,\,\,\,{\text{x}}\,\,\,{\text{ + }}\,\,\,\,{\text{x}}$
Equi. Conc. $0.1 - {\text{x}}\,\,\,\,\,\,\, \to \,\,\,\,\,\,\,{\text{x}}\,\,\,{\text{ + }}\,\,\,\,{\text{x}}$
Now we have to determine the concentration of hydroxide ions so, we will write the equilibrium constant for the above reaction,
\[{{\text{K}}_{\text{b}}}{\text{ = }}\,\dfrac{{\left[ {{\text{BH}}} \right]\left[ {{\text{O}}{{\text{H}}^ - }} \right]}}{{\left[ {{{\text{B}}^ - }} \right]}}\,\]
On substituting $1 \times {10^{ - 7}}\,$ for \[{{\text{K}}_{\text{b}}}\], x for \[\left[ {{\text{BH}}} \right]\]and \[\left[ {{\text{O}}{{\text{H}}^ - }} \right]\] and $0.1 - {\text{x}}$ for \[\left[ {{{\text{B}}^ - }} \right]\],
\[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 7}}{\text{ = }}\,\dfrac{{\left[ {\text{x}} \right]\left[ {\text{x}} \right]}}{{\left[ {0.1 - {\text{x}}\,} \right]}}\,\]
As the value of dissociation constant of base is very less means base dissociation is very small so, we can assume that \[0.1 - {\text{x}} \approx \,{\text{0}}{\text{.1}}\] So,
\[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 7}}{\text{ = }}\,\dfrac{{\left[ {\text{x}} \right]\left[ {\text{x}} \right]}}{{\left[ {0.1\,} \right]}}\,\]
\[{{\text{x}}^2}\, = \,{\text{1}} \times {\text{1}}{{\text{0}}^{ - 7}} \times 0.1\,\]
\[{{\text{x}}^2}\, = \,{\text{1}} \times {\text{1}}{{\text{0}}^{ - 8}}\]
\[{\text{x}}\, = \sqrt {\,{\text{1}} \times {\text{1}}{{\text{0}}^{ - 8}}} \]
\[{\text{x}}\, = {\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\]
So, the concentration of hydroxide ions is \[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\]
The formula to calculate the pOH is as follows:
\[{\text{pOH}}\,\,{\text{ = }}\, - \,{\text{log }}\left[ {{\text{O}}{{\text{H}}^ - }} \right]\]
On substituting \[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\] for hydroxide \[{\text{O}}{{\text{H}}^ - }\] concentration.
\[{\text{pOH}}\,\,{\text{ = }}\, - \,{\text{log }}\left[ {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}} \right]\]
\[{\text{pOH}}\,\,{\text{ = }}\,4\,{\text{log}}\,{\text{10}}\]
\[{\text{pOH}}\,\,{\text{ = }}\,4\]
So, the pOH is\[4\].
Note:We can also determine the pOH as follows:
We calculated in above solution that $\,{{\text{K}}_{\text{b}}}\, = \,1 \times {10^{ - 7}}\,$.
Now, the relation between acid dissociation constant and base dissociation constant is,
${{\text{K}}_{\text{a}}}{ \times}\,\,{{\text{K}}_{\text{b}}}\,{\text{ = }}\,{{\text{K}}_{\text{w}}}$
Where,
${{\text{K}}_{\text{a}}}$ is the acid dissociation constant
${{\text{K}}_{\text{b}}}$ is the base dissociation constant
${{\text{K}}_{\text{w}}}$ is the ionic product of water whose value is ${10^{ - 14}}$.
${{\text{K}}_{\text{a}}}{ \times }\,\,{{\text{K}}_{\text{b}}}\,{\text{ = }}\,{10^{ - {\text{14}}}}$
So,
${{\text{K}}_{\text{a}}}{ \times }\,\,1 \times {10^{ - 7}}\,{\text{ = }}\,{10^{ - {\text{14}}}}$
${{\text{K}}_{\text{a}}}\,{\text{ = }}\,\,1 \times {10^{ - 7}}$
The formula to calculate the hydroxide ion concentration from acid dissociation constant is as follows:
${\text{O}}{{\text{H}}^ - }\, = \,\sqrt {\dfrac{{{{\text{K}}_{\text{w}}}{\text{C}}}}{{{{\text{K}}_{\text{a}}}}}} $
Where,
C is the concentration of base.
On substituting $0.1$ M for C, $\,1 \times {10^{ - 7}}$ for ${{\text{K}}_{\text{a}}}$, and ${10^{ - {\text{14}}}}$ for ${{\text{K}}_{\text{w}}}$,
${\text{O}}{{\text{H}}^ - }\, = \,\sqrt {\dfrac{{\,{{10}^{ - 14}}\, \times 0.1}}{{\,1 \times {{10}^{ - 7}}}}} $
${\text{O}}{{\text{H}}^ - }\, = \,\sqrt {1 \times {{10}^{ - 8}}} $
${\text{O}}{{\text{H}}^ - }\, = \,1 \times {10^{ - 4}}$
On substituting \[{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}\] for hydroxide \[{\text{O}}{{\text{H}}^ - }\] concentration.
\[{\text{pOH}}\,\,{\text{ = }}\, - \,{\text{log }}\left[ {{\text{1}} \times {\text{1}}{{\text{0}}^{ - 4}}} \right]\]
\[{\text{pOH}}\,\,{\text{ = }}\,4\]
So, the pOH is\[4\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

