
How do you plot the polar coordinate $ \left( {3,{{150}^ \circ }} \right) $ ?
Answer
521.4k+ views
Hint: As we know that the polar coordinate is like an alternative to the Cartesian coordinate system. On one hand the Cartesian system determines the position east and north of a fixed point while on the other hand the polar coordinates determine the location using direction and distance of a fixed point.
Complete step by step solution:
We first locate the angle of the polar coordinate plane and then we can plot the values.
As we know that a polar coordinate $ \left( {r,\theta } \right) $ in a Cartesian coordinate is $ \left( {r\cos \theta ,r\sin \theta } \right) $ .
So the value of $ \left( {3,{{150}^ \circ }} \right) $ in polar coordinate is $ \left( {3\cos {{150}^ \circ },3\sin {{150}^ \circ }} \right) $ .
Now, we know that the value of $ \cos {150^ \circ } $ as $ \left( { - \dfrac{{\sqrt 3 }}{2}} \right) $ and $ \sin {150^ \circ } $ is $ \left( {\dfrac{1}{2}} \right) $ .
So the Cartesian coordinate is $ \left( {3 \times \dfrac{{ - \sqrt 3 }}{2},3 \times \dfrac{1}{2}} \right) $ .
$ \Rightarrow \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right) $
$ \Rightarrow \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right) $
$ \Rightarrow \left( { - 2.59807,1.5} \right) $
Hence we can plot these values as the polar coordinates.
Note: We should note that in the above solution we have used the angle sum identity to find the values of $ \sin {150^ \circ } $ and $ \cos {150^ \circ } $ . We can write $ \sin {150^ \circ } $ as $ \sin \left( {{{180}^ \circ } - {{30}^ \circ }} \right) $ .
Also we know that $ \sin \left( {{{180}^ \circ } - \theta } \right) = \sin \theta $ . So, $ \sin \left( {{{180}^ \circ } - {{30}^ \circ }} \right) = \sin {30^ \circ } $ which gives us the value $ \sin {150^ \circ } = \dfrac{1}{2} $ .
Similarly we can find the value of $ \cos {150^ \circ } $ as it can be written as $ \cos \left( {{{180}^ \circ } - {{30}^ \circ }} \right) = - \cos {30^ \circ } $ . There is a negative sign in the cosine value. So, $ \cos {150^ \circ } = \dfrac{{ - \sqrt 3 }}{2} $ .
Complete step by step solution:
We first locate the angle of the polar coordinate plane and then we can plot the values.
As we know that a polar coordinate $ \left( {r,\theta } \right) $ in a Cartesian coordinate is $ \left( {r\cos \theta ,r\sin \theta } \right) $ .
So the value of $ \left( {3,{{150}^ \circ }} \right) $ in polar coordinate is $ \left( {3\cos {{150}^ \circ },3\sin {{150}^ \circ }} \right) $ .
Now, we know that the value of $ \cos {150^ \circ } $ as $ \left( { - \dfrac{{\sqrt 3 }}{2}} \right) $ and $ \sin {150^ \circ } $ is $ \left( {\dfrac{1}{2}} \right) $ .
So the Cartesian coordinate is $ \left( {3 \times \dfrac{{ - \sqrt 3 }}{2},3 \times \dfrac{1}{2}} \right) $ .
$ \Rightarrow \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right) $
$ \Rightarrow \left( {\dfrac{{ - 3\sqrt 3 }}{2},\dfrac{3}{2}} \right) $
$ \Rightarrow \left( { - 2.59807,1.5} \right) $
Hence we can plot these values as the polar coordinates.
Note: We should note that in the above solution we have used the angle sum identity to find the values of $ \sin {150^ \circ } $ and $ \cos {150^ \circ } $ . We can write $ \sin {150^ \circ } $ as $ \sin \left( {{{180}^ \circ } - {{30}^ \circ }} \right) $ .
Also we know that $ \sin \left( {{{180}^ \circ } - \theta } \right) = \sin \theta $ . So, $ \sin \left( {{{180}^ \circ } - {{30}^ \circ }} \right) = \sin {30^ \circ } $ which gives us the value $ \sin {150^ \circ } = \dfrac{1}{2} $ .
Similarly we can find the value of $ \cos {150^ \circ } $ as it can be written as $ \cos \left( {{{180}^ \circ } - {{30}^ \circ }} \right) = - \cos {30^ \circ } $ . There is a negative sign in the cosine value. So, $ \cos {150^ \circ } = \dfrac{{ - \sqrt 3 }}{2} $ .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

