
When planting a forest, the number of jambhul trees planted was greater than the number of ashoka trees by \[60\]. If there are altogether \[200\]trees of these two types, how many jambhul trees were planted.
Answer
505.2k+ views
Hint: In order to find the number of jambhul trees planted, we must assign a variable to the number of ashoka trees. Since we are given that the number of jambhul trees are \[60\] more than ashoka, we will assign the variable value accordingly. And then we must sum up both the numbers and equate to \[200\]and upon solving it we obtain the required solution.
Complete step-by-step solution:
Now let us briefly consider linear equations. A linear equation can be expressed in the form of any number of variables as required. As the number of the variables increase, the name of the equation simply denotes it. The general equation of a linear equation in a single variable is \[ax+b=0\]. We can find the linear equation in three major ways. They are: point-slope form, standard form and slope-intercept form.
Now let us calculate the number of jambhul trees planted.
Let us consider the number of ashoka trees as \[x\].
We are given that the number of jambhul trees is \[60\] more than ashoka.
So, the number of jambhul trees \[60+x\].
The total number of trees planted in the forest\[=200\]
Now let us sum up both the count of trees.
We get,
\[\begin{align}
& \Rightarrow x+60+x=200 \\
& \Rightarrow 2x+60=200 \\
& \Rightarrow 2x=140 \\
& \Rightarrow x=70 \\
\end{align}\]
\[\therefore \] The number of jambul trees planted\[=\left( 60+x \right)=\left( 60+70 \right)=130\]
Note: We must notice while assigning the variable values as wrongly assigning provides us with incorrect answers. Before assigning we must have a clear view regarding the problem given. While solving the linear equations, the common error committed could be wrongly placing of the braces.
Complete step-by-step solution:
Now let us briefly consider linear equations. A linear equation can be expressed in the form of any number of variables as required. As the number of the variables increase, the name of the equation simply denotes it. The general equation of a linear equation in a single variable is \[ax+b=0\]. We can find the linear equation in three major ways. They are: point-slope form, standard form and slope-intercept form.
Now let us calculate the number of jambhul trees planted.
Let us consider the number of ashoka trees as \[x\].
We are given that the number of jambhul trees is \[60\] more than ashoka.
So, the number of jambhul trees \[60+x\].
The total number of trees planted in the forest\[=200\]
Now let us sum up both the count of trees.
We get,
\[\begin{align}
& \Rightarrow x+60+x=200 \\
& \Rightarrow 2x+60=200 \\
& \Rightarrow 2x=140 \\
& \Rightarrow x=70 \\
\end{align}\]
\[\therefore \] The number of jambul trees planted\[=\left( 60+x \right)=\left( 60+70 \right)=130\]
Note: We must notice while assigning the variable values as wrongly assigning provides us with incorrect answers. Before assigning we must have a clear view regarding the problem given. While solving the linear equations, the common error committed could be wrongly placing of the braces.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What are gulf countries and why they are called Gulf class 8 social science CBSE


