
Place A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other they meet in 1 hour. What are the speeds of the two cars?
Answer
556.8k+ views
Hint:
First we will assume the speed of the car at place A and at place B to be any variable and then we will form equations using the information given in the question. From there, we will get two equations including two variables. We will solve these equations to get the value of the variables assumed.
Complete step by step solution:
Let the speed of car at place A be \[x~km/h\] and let the speed of car at place B be \[y~km/h\]
Thus, the relative speed of the cars when they travel in same directions is equal to $\left( x-y \right)km/h$
We know the distance between the place A and B is equal to 100 km.
It is given that they both meet in 5 hours when they travel in the same direction.
Therefore,
$t=5hours$
We know the formula;
$\text{distance}=\text{speed}\times \text{time}$
Substituting the value of distance, time and speed, we get
$\Rightarrow 100=\left( x-y \right)\times 5$
Dividing both sides by 5, we get
$\Rightarrow x-y=20$ ……….. $\left( 1 \right)$
The relative speed of the cars when they travel in same directions is equal to $\left( x+y \right)km/h$
We know the distance between the place A and B is equal to 100 km.
It is given that they both meet in 1 hours when they travel in the same direction.
Therefore,
$t=1hour$
We know the formula;
$\text{distance}=\text{speed}\times \text{time}$
Substituting the value of distance, time and speed, we get
$\Rightarrow 100=\left( x+y \right)\times 1$
On multiplying the terms, we get
$\Rightarrow x+y=100$ ……….. $\left( 2 \right)$
Adding equation 1 and equation 2, we get
$
\underline{
x+y=100 \\
x-y=20 \\
} \\
2x=120 \\
$
Dividing both sides by 2, we get
$\Rightarrow x=60$
Now, we will substitute the value of $x$ in equation 2.
$\Rightarrow 60+y=100$
Subtracting 60 from sides, we get
$
\Rightarrow 60+y-60=100-60 \\
\Rightarrow y=40 \\
$
Thus, the speed of car at place A is equal to $60km/h$ and the speed of car at place B is equal to $40km/h$.
Note:
Here we have used the formula; $\text{distance}= \text{speed} \times \text{time}$, here it means that the distance travel by any object is equal to the product of the speed of that object and the time taken by that object to travel that distance.
First we will assume the speed of the car at place A and at place B to be any variable and then we will form equations using the information given in the question. From there, we will get two equations including two variables. We will solve these equations to get the value of the variables assumed.
Complete step by step solution:
Let the speed of car at place A be \[x~km/h\] and let the speed of car at place B be \[y~km/h\]
Thus, the relative speed of the cars when they travel in same directions is equal to $\left( x-y \right)km/h$
We know the distance between the place A and B is equal to 100 km.
It is given that they both meet in 5 hours when they travel in the same direction.
Therefore,
$t=5hours$
We know the formula;
$\text{distance}=\text{speed}\times \text{time}$
Substituting the value of distance, time and speed, we get
$\Rightarrow 100=\left( x-y \right)\times 5$
Dividing both sides by 5, we get
$\Rightarrow x-y=20$ ……….. $\left( 1 \right)$
The relative speed of the cars when they travel in same directions is equal to $\left( x+y \right)km/h$
We know the distance between the place A and B is equal to 100 km.
It is given that they both meet in 1 hours when they travel in the same direction.
Therefore,
$t=1hour$
We know the formula;
$\text{distance}=\text{speed}\times \text{time}$
Substituting the value of distance, time and speed, we get
$\Rightarrow 100=\left( x+y \right)\times 1$
On multiplying the terms, we get
$\Rightarrow x+y=100$ ……….. $\left( 2 \right)$
Adding equation 1 and equation 2, we get
$
\underline{
x+y=100 \\
x-y=20 \\
} \\
2x=120 \\
$
Dividing both sides by 2, we get
$\Rightarrow x=60$
Now, we will substitute the value of $x$ in equation 2.
$\Rightarrow 60+y=100$
Subtracting 60 from sides, we get
$
\Rightarrow 60+y-60=100-60 \\
\Rightarrow y=40 \\
$
Thus, the speed of car at place A is equal to $60km/h$ and the speed of car at place B is equal to $40km/h$.
Note:
Here we have used the formula; $\text{distance}= \text{speed} \times \text{time}$, here it means that the distance travel by any object is equal to the product of the speed of that object and the time taken by that object to travel that distance.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

