
Photoelectrons are liberated by the ultraviolet light of wavelength \[3000\mathop {\text{A}}\limits^\circ \] from a metallic surface for which the photoelectric threshold is \[4000\mathop {\text{A}}\limits^\circ \]. The de-Broglie wavelength of electrons emitted with maximum kinetic energy is:
A) 1.2nm
B) 3.215 nm
C) 7.28 \[\mathop {\text{A}}\limits^\circ \]
D) 1.65 \[\mathop {\text{A}}\limits^\circ \]
Answer
577.5k+ views
Hint: Using the given wavelength of Photoelectrons calculate the energy of the photon. Similarly, using the threshold wavelength calculate the threshold energy. Using the calculated photon energy and threshold energy calculate the maximum kinetic energy of the electron. Using the kinetic energy calculate the de-Broglie wavelength of the electron.
Formula Used: The equation for the energy of a photon is:
\[E{\text{ = }}\dfrac{{hc}}{\lambda }\]
The threshold energy equation is :
\[E^\circ {\text{ = }}\dfrac{{hc}}{{\lambda ^\circ }}\]
The equation for Kinetic energy is:
\[K.E. = E - E^\circ \]
\[K.E. = \dfrac{1}{2}m{v^2}\]
De-Broglie wavelength
\[\lambda {\text{ = }}\dfrac{h}{{mv}}\]
Complete step by step answer:
To calculate the maximum kinetic energy we need to calculate photon energy and threshold energy.
Calculate the energy of photon as follows:
\[E{\text{ = }}\dfrac{{hc}}{\lambda }\]
Here,
\[E{\text{ }}\]= energy of the photon
\[h\]= Planck’s constant = \[6.626 \times {10^{ - 34}}{\text{Js}}\]
\[c\]= speed of light in vacuum = \[{\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}\]
\[\lambda \] = wavelength = \[3000\mathop {\text{A}}\limits^\circ \]= \[{\text{3000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\]
( As 1\[\mathop {\text{A}}\limits^\circ \]=\[{\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\])
Now, We can substitute \[{\text{3000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\] for the wavelength of a photoelectron, \[6.626 \times {10^{ - 34}}{\text{Js}}\] for Planck’s constant, \[{\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}\] for speed of light and calculate the energy of the photon.
\[E{\text{ = }}\dfrac{{6.626 \times {{10}^{ - 34}}{\text{Js}} \times {\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}}}{{{\text{3000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}}} = 6.626 \times {10^{ - 19}}{\text{J}}\]
Similarly, we can calculate the threshold energy using the threshold wavelength as follows:
\[E^\circ {\text{ = }}\dfrac{{hc}}{{\lambda ^\circ }}\]
\[\lambda ^\circ \] = threshold wavelength = \[4000\mathop {\text{A}}\limits^\circ \] =\[{\text{4000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\]
\[E{\text{ = }}\dfrac{{6.626 \times {{10}^{ - 34}}{\text{Js}} \times {\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}}}{{{\text{4000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}}} = 4.9695 \times {10^{ - 19}}{\text{J}}\]
Now, we have the energy of photon and threshold energy so we can calculate the kinetic energy as follows:
\[K.E. = E - E^\circ \]
Substitute \[6.626 \times {10^{ - 19}}{\text{J}}\] for the energy of the photon and \[4.9695 \times {10^{ - 19}}{\text{J}}\] for threshold energy.
\[K.E. = 6.626 \times {10^{ - 19}}{\text{J}} - 4.9695 \times {10^{ - 19}}{\text{J}} = 1.6565 \times {10^{ - 19}}{\text{J}}\]
Now, using the kinetic energy calculate the de-Broglie wavelength of an electron as follows:
\[K.E. = \dfrac{1}{2}m{v^2}\]
Where,
\[m\] = mass of electron = \[9.1 \times {10^{ - 31}}{\text{kg}}\]
\[v\] = velocity of electron
\[m{v^2} = 2 \times K.E.\]
Multiply both the side of the equation by m.
So, \[{m^2}{v^2} = 2 \times K.E. \times m\]
\[{m^2}{v^2} = 2 \times 1.6565 \times {10^{ - 19}}{\text{J}} \times 9.1 \times {10^{ - 31}}{\text{kg}}\]
\[{m^2}{v^2} = {\text{ 3}}{\text{.01483}} \times {\text{1}}{{\text{0}}^{ - 49}}\]
\[mv = {\text{ 5}}{\text{.49}} \times {\text{1}}{{\text{0}}^{ - 25}}\]
Now, substitute \[{\text{ 5}}{\text{.49}} \times {\text{1}}{{\text{0}}^{ - 25}}\] in the de-Broglie wavelength equation.
\[\lambda {\text{ = }}\dfrac{h}{{mv}}\]
\[\lambda {\text{ = }}\dfrac{{6.626 \times {{10}^{ - 34}}}}{{{\text{ 5}}{\text{.49}} \times {\text{1}}{{\text{0}}^{ - 25}}}} = 1.2 \times {10^{ - 9}}{\text{m}}\]
1nm = \[1.0 \times {10^{ - 9}}{\text{m}}\]
\[\lambda {\text{ = }}1.2{\text{ nm}}\]
Thus, the de-Broglie wavelength of electrons emitted with maximum kinetic energy is 1.2 nm.
Hence, the correct option is (A) 1.2nm.
Note: The energy of a photon is the sum of the kinetic energy of the electron and threshold energy. Threshold wavelength is the maximum wavelength incident radiation necessary to emit a photon. de-Broglie pointed out that electrons have dual nature. It can behave as a wave as well as a particle.
Formula Used: The equation for the energy of a photon is:
\[E{\text{ = }}\dfrac{{hc}}{\lambda }\]
The threshold energy equation is :
\[E^\circ {\text{ = }}\dfrac{{hc}}{{\lambda ^\circ }}\]
The equation for Kinetic energy is:
\[K.E. = E - E^\circ \]
\[K.E. = \dfrac{1}{2}m{v^2}\]
De-Broglie wavelength
\[\lambda {\text{ = }}\dfrac{h}{{mv}}\]
Complete step by step answer:
To calculate the maximum kinetic energy we need to calculate photon energy and threshold energy.
Calculate the energy of photon as follows:
\[E{\text{ = }}\dfrac{{hc}}{\lambda }\]
Here,
\[E{\text{ }}\]= energy of the photon
\[h\]= Planck’s constant = \[6.626 \times {10^{ - 34}}{\text{Js}}\]
\[c\]= speed of light in vacuum = \[{\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}\]
\[\lambda \] = wavelength = \[3000\mathop {\text{A}}\limits^\circ \]= \[{\text{3000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\]
( As 1\[\mathop {\text{A}}\limits^\circ \]=\[{\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\])
Now, We can substitute \[{\text{3000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\] for the wavelength of a photoelectron, \[6.626 \times {10^{ - 34}}{\text{Js}}\] for Planck’s constant, \[{\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}\] for speed of light and calculate the energy of the photon.
\[E{\text{ = }}\dfrac{{6.626 \times {{10}^{ - 34}}{\text{Js}} \times {\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}}}{{{\text{3000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}}} = 6.626 \times {10^{ - 19}}{\text{J}}\]
Similarly, we can calculate the threshold energy using the threshold wavelength as follows:
\[E^\circ {\text{ = }}\dfrac{{hc}}{{\lambda ^\circ }}\]
\[\lambda ^\circ \] = threshold wavelength = \[4000\mathop {\text{A}}\limits^\circ \] =\[{\text{4000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}\]
\[E{\text{ = }}\dfrac{{6.626 \times {{10}^{ - 34}}{\text{Js}} \times {\text{3}}{\text{.0}} \times {\text{1}}{{\text{0}}^8}{\text{m/s}}}}{{{\text{4000}} \times {\text{1}}{{\text{0}}^{ - 10}}{\text{m}}}} = 4.9695 \times {10^{ - 19}}{\text{J}}\]
Now, we have the energy of photon and threshold energy so we can calculate the kinetic energy as follows:
\[K.E. = E - E^\circ \]
Substitute \[6.626 \times {10^{ - 19}}{\text{J}}\] for the energy of the photon and \[4.9695 \times {10^{ - 19}}{\text{J}}\] for threshold energy.
\[K.E. = 6.626 \times {10^{ - 19}}{\text{J}} - 4.9695 \times {10^{ - 19}}{\text{J}} = 1.6565 \times {10^{ - 19}}{\text{J}}\]
Now, using the kinetic energy calculate the de-Broglie wavelength of an electron as follows:
\[K.E. = \dfrac{1}{2}m{v^2}\]
Where,
\[m\] = mass of electron = \[9.1 \times {10^{ - 31}}{\text{kg}}\]
\[v\] = velocity of electron
\[m{v^2} = 2 \times K.E.\]
Multiply both the side of the equation by m.
So, \[{m^2}{v^2} = 2 \times K.E. \times m\]
\[{m^2}{v^2} = 2 \times 1.6565 \times {10^{ - 19}}{\text{J}} \times 9.1 \times {10^{ - 31}}{\text{kg}}\]
\[{m^2}{v^2} = {\text{ 3}}{\text{.01483}} \times {\text{1}}{{\text{0}}^{ - 49}}\]
\[mv = {\text{ 5}}{\text{.49}} \times {\text{1}}{{\text{0}}^{ - 25}}\]
Now, substitute \[{\text{ 5}}{\text{.49}} \times {\text{1}}{{\text{0}}^{ - 25}}\] in the de-Broglie wavelength equation.
\[\lambda {\text{ = }}\dfrac{h}{{mv}}\]
\[\lambda {\text{ = }}\dfrac{{6.626 \times {{10}^{ - 34}}}}{{{\text{ 5}}{\text{.49}} \times {\text{1}}{{\text{0}}^{ - 25}}}} = 1.2 \times {10^{ - 9}}{\text{m}}\]
1nm = \[1.0 \times {10^{ - 9}}{\text{m}}\]
\[\lambda {\text{ = }}1.2{\text{ nm}}\]
Thus, the de-Broglie wavelength of electrons emitted with maximum kinetic energy is 1.2 nm.
Hence, the correct option is (A) 1.2nm.
Note: The energy of a photon is the sum of the kinetic energy of the electron and threshold energy. Threshold wavelength is the maximum wavelength incident radiation necessary to emit a photon. de-Broglie pointed out that electrons have dual nature. It can behave as a wave as well as a particle.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

