
Period of the given trigonometric function $\tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( {{{120}^0} + x} \right)$ is
$
\left( a \right)\dfrac{\pi }{2} \\
\left( b \right)\dfrac{\pi }{3} \\
\left( c \right)\dfrac{{2\pi }}{3} \\
\left( d \right)\pi \\
$
Answer
603.3k+ views
Hint-In this question, we use the concept of periodic function. Periodic function is a function that repeats its values in regular intervals or periods. A function is said to be periodic if there exists a positive real number T, \[f\left( {x + T} \right) = f\left( x \right)\] and T is a period of function f(x).Period of such type of function, $ag\left( {bx + c} \right) + d$ is $\dfrac{T}{{\left| b \right|}}$ , where T is a fundamental period of g(x).
Complete step-by-step solution -
Let, $f\left( x \right) = \tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( {{{120}^0} + x} \right)$
Now, we use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Multiply by 2 in numerator and denominator,
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{2\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Use trigonometric identity, $2\sin \left( {A + B} \right)\sin \left( {A - B} \right) = \cos \left( {2B} \right) - \cos \left( {2A} \right)$ and $2\cos \left( {A + B} \right)\cos \left( {A - B} \right) = \cos \left( {2A} \right) - \cos \left( {2B} \right)$.
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) - \cos \left( {{{240}^0}} \right)}}{{\cos \left( {{{240}^0}} \right) + \cos \left( {2x} \right)}}} \right)$
We know, $\cos \left( {{{240}^0}} \right) = \cos \left( {{{180}^0} + {{60}^0}} \right) = - \cos \left( {{{60}^0}} \right) = \dfrac{{ - 1}}{2}$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) + \dfrac{1}{2}}}{{ - \dfrac{1}{2} + \cos \left( {2x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\cos \left( {2x} \right) + 1}}{{2\cos \left( {2x} \right) - 1}}} \right) \\
\]
Now use trigonometric identity, $\cos \left( {2x} \right) = {\cos ^2}\left( x \right) - {\sin ^2}\left( x \right)$ and ${\sin ^2}\left( x \right) + {\cos ^2}\left( x \right) = 1$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + {{\sin }^2}x + {{\cos }^2}x}}{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x - 3{{\sin }^2}x}}} \right) \\
\\
\]
Divide by ${\cos ^2}x$ in numerator and denominator,
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3 - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right) \\
\Rightarrow f\left( x \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}} \\
\]
We know, $\tan \left( {3x} \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}}$
\[ \Rightarrow f\left( x \right) = \tan \left( {3x} \right)\]
We know tanx is a periodic function with fundamental period $\pi $ .
Now, we find period of \[\tan \left( {3x} \right)\] so we use $ag\left( {bx + c} \right) + d$ is $\dfrac{T}{{\left| b \right|}}$ where T is a fundamental period of g(x).
Fundamental period of f(x), $T = \pi $ and value of b=3
Hence, period of f(x) is $\dfrac{\pi }{3}$
So, the correct option is (b).
Note-In such types of problems we use some important points to solve the question in an easy way like first we convert the question into simple forms like sine, cosine, tan etc. by using some trigonometric identities and then find the fundamental period of function.
Complete step-by-step solution -
Let, $f\left( x \right) = \tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( {{{120}^0} + x} \right)$
Now, we use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Multiply by 2 in numerator and denominator,
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{2\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Use trigonometric identity, $2\sin \left( {A + B} \right)\sin \left( {A - B} \right) = \cos \left( {2B} \right) - \cos \left( {2A} \right)$ and $2\cos \left( {A + B} \right)\cos \left( {A - B} \right) = \cos \left( {2A} \right) - \cos \left( {2B} \right)$.
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) - \cos \left( {{{240}^0}} \right)}}{{\cos \left( {{{240}^0}} \right) + \cos \left( {2x} \right)}}} \right)$
We know, $\cos \left( {{{240}^0}} \right) = \cos \left( {{{180}^0} + {{60}^0}} \right) = - \cos \left( {{{60}^0}} \right) = \dfrac{{ - 1}}{2}$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) + \dfrac{1}{2}}}{{ - \dfrac{1}{2} + \cos \left( {2x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\cos \left( {2x} \right) + 1}}{{2\cos \left( {2x} \right) - 1}}} \right) \\
\]
Now use trigonometric identity, $\cos \left( {2x} \right) = {\cos ^2}\left( x \right) - {\sin ^2}\left( x \right)$ and ${\sin ^2}\left( x \right) + {\cos ^2}\left( x \right) = 1$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + {{\sin }^2}x + {{\cos }^2}x}}{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x - 3{{\sin }^2}x}}} \right) \\
\\
\]
Divide by ${\cos ^2}x$ in numerator and denominator,
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3 - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right) \\
\Rightarrow f\left( x \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}} \\
\]
We know, $\tan \left( {3x} \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}}$
\[ \Rightarrow f\left( x \right) = \tan \left( {3x} \right)\]
We know tanx is a periodic function with fundamental period $\pi $ .
Now, we find period of \[\tan \left( {3x} \right)\] so we use $ag\left( {bx + c} \right) + d$ is $\dfrac{T}{{\left| b \right|}}$ where T is a fundamental period of g(x).
Fundamental period of f(x), $T = \pi $ and value of b=3
Hence, period of f(x) is $\dfrac{\pi }{3}$
So, the correct option is (b).
Note-In such types of problems we use some important points to solve the question in an easy way like first we convert the question into simple forms like sine, cosine, tan etc. by using some trigonometric identities and then find the fundamental period of function.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

