
Period of the given trigonometric function $\tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( {{{120}^0} + x} \right)$ is
$
\left( a \right)\dfrac{\pi }{2} \\
\left( b \right)\dfrac{\pi }{3} \\
\left( c \right)\dfrac{{2\pi }}{3} \\
\left( d \right)\pi \\
$
Answer
617.1k+ views
Hint-In this question, we use the concept of periodic function. Periodic function is a function that repeats its values in regular intervals or periods. A function is said to be periodic if there exists a positive real number T, \[f\left( {x + T} \right) = f\left( x \right)\] and T is a period of function f(x).Period of such type of function, $ag\left( {bx + c} \right) + d$ is $\dfrac{T}{{\left| b \right|}}$ , where T is a fundamental period of g(x).
Complete step-by-step solution -
Let, $f\left( x \right) = \tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( {{{120}^0} + x} \right)$
Now, we use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Multiply by 2 in numerator and denominator,
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{2\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Use trigonometric identity, $2\sin \left( {A + B} \right)\sin \left( {A - B} \right) = \cos \left( {2B} \right) - \cos \left( {2A} \right)$ and $2\cos \left( {A + B} \right)\cos \left( {A - B} \right) = \cos \left( {2A} \right) - \cos \left( {2B} \right)$.
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) - \cos \left( {{{240}^0}} \right)}}{{\cos \left( {{{240}^0}} \right) + \cos \left( {2x} \right)}}} \right)$
We know, $\cos \left( {{{240}^0}} \right) = \cos \left( {{{180}^0} + {{60}^0}} \right) = - \cos \left( {{{60}^0}} \right) = \dfrac{{ - 1}}{2}$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) + \dfrac{1}{2}}}{{ - \dfrac{1}{2} + \cos \left( {2x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\cos \left( {2x} \right) + 1}}{{2\cos \left( {2x} \right) - 1}}} \right) \\
\]
Now use trigonometric identity, $\cos \left( {2x} \right) = {\cos ^2}\left( x \right) - {\sin ^2}\left( x \right)$ and ${\sin ^2}\left( x \right) + {\cos ^2}\left( x \right) = 1$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + {{\sin }^2}x + {{\cos }^2}x}}{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x - 3{{\sin }^2}x}}} \right) \\
\\
\]
Divide by ${\cos ^2}x$ in numerator and denominator,
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3 - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right) \\
\Rightarrow f\left( x \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}} \\
\]
We know, $\tan \left( {3x} \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}}$
\[ \Rightarrow f\left( x \right) = \tan \left( {3x} \right)\]
We know tanx is a periodic function with fundamental period $\pi $ .
Now, we find period of \[\tan \left( {3x} \right)\] so we use $ag\left( {bx + c} \right) + d$ is $\dfrac{T}{{\left| b \right|}}$ where T is a fundamental period of g(x).
Fundamental period of f(x), $T = \pi $ and value of b=3
Hence, period of f(x) is $\dfrac{\pi }{3}$
So, the correct option is (b).
Note-In such types of problems we use some important points to solve the question in an easy way like first we convert the question into simple forms like sine, cosine, tan etc. by using some trigonometric identities and then find the fundamental period of function.
Complete step-by-step solution -
Let, $f\left( x \right) = \tan x.\tan \left( {{{120}^0} - x} \right).\tan \left( {{{120}^0} + x} \right)$
Now, we use $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Multiply by 2 in numerator and denominator,
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\sin \left( {{{120}^0} - x} \right).\sin \left( {{{120}^0} + x} \right)}}{{2\cos \left( {{{120}^0} - x} \right).\cos \left( {{{120}^0} + x} \right)}}} \right)$
Use trigonometric identity, $2\sin \left( {A + B} \right)\sin \left( {A - B} \right) = \cos \left( {2B} \right) - \cos \left( {2A} \right)$ and $2\cos \left( {A + B} \right)\cos \left( {A - B} \right) = \cos \left( {2A} \right) - \cos \left( {2B} \right)$.
$ \Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) - \cos \left( {{{240}^0}} \right)}}{{\cos \left( {{{240}^0}} \right) + \cos \left( {2x} \right)}}} \right)$
We know, $\cos \left( {{{240}^0}} \right) = \cos \left( {{{180}^0} + {{60}^0}} \right) = - \cos \left( {{{60}^0}} \right) = \dfrac{{ - 1}}{2}$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{\cos \left( {2x} \right) + \dfrac{1}{2}}}{{ - \dfrac{1}{2} + \cos \left( {2x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\cos \left( {2x} \right) + 1}}{{2\cos \left( {2x} \right) - 1}}} \right) \\
\]
Now use trigonometric identity, $\cos \left( {2x} \right) = {\cos ^2}\left( x \right) - {\sin ^2}\left( x \right)$ and ${\sin ^2}\left( x \right) + {\cos ^2}\left( x \right) = 1$
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) + {{\sin }^2}x + {{\cos }^2}x}}{{2\left( {{{\cos }^2}x - {{\sin }^2}x} \right) - \left( {{{\sin }^2}x + {{\cos }^2}x} \right)}}} \right) \\
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x - 3{{\sin }^2}x}}} \right) \\
\\
\]
Divide by ${\cos ^2}x$ in numerator and denominator,
\[
\Rightarrow f\left( x \right) = \tan x.\left( {\dfrac{{3 - {{\tan }^2}x}}{{1 - 3{{\tan }^2}x}}} \right) \\
\Rightarrow f\left( x \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}} \\
\]
We know, $\tan \left( {3x} \right) = \dfrac{{3\tan x - {{\tan }^3}x}}{{1 - 3{{\tan }^2}x}}$
\[ \Rightarrow f\left( x \right) = \tan \left( {3x} \right)\]
We know tanx is a periodic function with fundamental period $\pi $ .
Now, we find period of \[\tan \left( {3x} \right)\] so we use $ag\left( {bx + c} \right) + d$ is $\dfrac{T}{{\left| b \right|}}$ where T is a fundamental period of g(x).
Fundamental period of f(x), $T = \pi $ and value of b=3
Hence, period of f(x) is $\dfrac{\pi }{3}$
So, the correct option is (b).
Note-In such types of problems we use some important points to solve the question in an easy way like first we convert the question into simple forms like sine, cosine, tan etc. by using some trigonometric identities and then find the fundamental period of function.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

