
Period of $\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)$ is
$\begin{align}
& a)\dfrac{\pi }{2} \\
& b)\pi \\
& c)\dfrac{3\pi }{2} \\
& d)2\pi \\
\end{align}$
Answer
579k+ views
Hint: Now first we will convert the given expression with the help of formula $\cos \left( C-D \right)+\cos \left( C+D \right)=2\sin C\sin D$ . Now we know that $\cos \left( \dfrac{\pi }{2} \right)=0$ hence we will get a simplified equation in terms of cos. Now again we know that the period of functions of type $a\cos \left( bx \right)$ is given by $\dfrac{2\pi }{b}$ . Hence we can find the period of the given function.
Complete step-by-step answer:
First let us understand the term period. A periodic function is a function which repeats the same values at regular intervals. The distance between this repetition is called the period of function. For a periodic function we have $f\left( x+T \right)=f\left( x \right)$ where T is the period of function. Let us take an example to understand.
We know that $\sin \left( 2\pi +\theta \right)=\sin \left( \theta \right)$ hence we can say that the period of the function $\sin \theta $ is $2\pi $ .
Now consider the given function $\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)$ .
We know that $\cos \left( C-D \right)+\cos \left( C+D \right)=2\sin C\sin D$
Hence we can say that $\dfrac{\cos \left( C-D \right)+\cos \left( C+D \right)}{2}=\sin C\sin D$
Now comparing the given function with RHS of above equation we get $C=\left( \dfrac{\pi }{4}-x \right)$ $D=\left( \dfrac{\pi }{4}+x \right)$ .
Hence we get,
$\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \left( \dfrac{\pi }{4}-x \right)-\left( \dfrac{\pi }{4}+x \right) \right)+\cos \left( \left( \dfrac{\pi }{4}-x \right)-\left( \dfrac{\pi }{4}+x \right) \right)}{2}$
Now opening the brackets we get,
$\begin{align}
& \sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \dfrac{\pi }{4}-x+\dfrac{\pi }{4}+x \right)+\cos \left( \dfrac{\pi }{4}-x-\dfrac{\pi }{4}-x \right)}{2} \\
& \Rightarrow \sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \dfrac{\pi }{2} \right)+\cos \left( -2x \right)}{2} \\
\end{align}$
Now we know that $\cos \dfrac{\pi }{2}=0$ , using this we get and $\cos \left( -x \right)=\cos \left( x \right)$
$\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( 2x \right)}{2}...................\left( 1 \right)$ .
Now for any function of the type $a\cos \left( bx \right)$ the period is given by $\dfrac{2\pi }{b}$ .
When we compare the expression $\dfrac{\cos \left( 2x \right)}{2}$ with $a\cos \left( bx \right)$ we get $a=\dfrac{1}{2}$ and b = 2.
Hence we get the period of $\dfrac{\cos \left( 2x \right)}{2}$ is $\dfrac{2\pi }{2}=\pi $ .
Hence from equation (1) we get the period of $\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)$ is $\pi $ .
So, the correct answer is “Option b”.
Note: Now note that the period is the shortest distance after which the function repeats itself. Hence even though we have $\sin \left( 4\pi +x \right)=\sin x$ $4\pi $ is not the shortest distance and hence not the period of the function. Also note that for a function $a\cos \left( bx \right)$ the period does not depend on amplitude a.
Complete step-by-step answer:
First let us understand the term period. A periodic function is a function which repeats the same values at regular intervals. The distance between this repetition is called the period of function. For a periodic function we have $f\left( x+T \right)=f\left( x \right)$ where T is the period of function. Let us take an example to understand.
We know that $\sin \left( 2\pi +\theta \right)=\sin \left( \theta \right)$ hence we can say that the period of the function $\sin \theta $ is $2\pi $ .
Now consider the given function $\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)$ .
We know that $\cos \left( C-D \right)+\cos \left( C+D \right)=2\sin C\sin D$
Hence we can say that $\dfrac{\cos \left( C-D \right)+\cos \left( C+D \right)}{2}=\sin C\sin D$
Now comparing the given function with RHS of above equation we get $C=\left( \dfrac{\pi }{4}-x \right)$ $D=\left( \dfrac{\pi }{4}+x \right)$ .
Hence we get,
$\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \left( \dfrac{\pi }{4}-x \right)-\left( \dfrac{\pi }{4}+x \right) \right)+\cos \left( \left( \dfrac{\pi }{4}-x \right)-\left( \dfrac{\pi }{4}+x \right) \right)}{2}$
Now opening the brackets we get,
$\begin{align}
& \sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \dfrac{\pi }{4}-x+\dfrac{\pi }{4}+x \right)+\cos \left( \dfrac{\pi }{4}-x-\dfrac{\pi }{4}-x \right)}{2} \\
& \Rightarrow \sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( \dfrac{\pi }{2} \right)+\cos \left( -2x \right)}{2} \\
\end{align}$
Now we know that $\cos \dfrac{\pi }{2}=0$ , using this we get and $\cos \left( -x \right)=\cos \left( x \right)$
$\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)=\dfrac{\cos \left( 2x \right)}{2}...................\left( 1 \right)$ .
Now for any function of the type $a\cos \left( bx \right)$ the period is given by $\dfrac{2\pi }{b}$ .
When we compare the expression $\dfrac{\cos \left( 2x \right)}{2}$ with $a\cos \left( bx \right)$ we get $a=\dfrac{1}{2}$ and b = 2.
Hence we get the period of $\dfrac{\cos \left( 2x \right)}{2}$ is $\dfrac{2\pi }{2}=\pi $ .
Hence from equation (1) we get the period of $\sin \left( \dfrac{\pi }{4}-x \right)\sin \left( \dfrac{\pi }{4}+x \right)$ is $\pi $ .
So, the correct answer is “Option b”.
Note: Now note that the period is the shortest distance after which the function repeats itself. Hence even though we have $\sin \left( 4\pi +x \right)=\sin x$ $4\pi $ is not the shortest distance and hence not the period of the function. Also note that for a function $a\cos \left( bx \right)$ the period does not depend on amplitude a.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

