
What is the percentage hydrolysis of $ NaCN $ in $ \dfrac{N}{80} $ solution when the dissociation constant for HCN in the solution is $ 1\cdot 3\times {{10}^{-9}} $ and $ {{K}_{w}} $ is $ 1\cdot 0\times {{10}^{-14}} $ ?
(A) $ 2\cdot 48% $
(B) $ 5\cdot 26% $
(C) $ 8\cdot 20% $
(D) $ 9\cdot 60% $
Answer
542.4k+ views
Hint: To find the percentage hydrolysis we need to find equilibrium hydrolysis constant i.e. ... Given in the question is dissociation constant for acid and dissociation constant for water i.e. $ {{K}_{w}} $ . $ {{K}_{h}} $ is given as the ratio of dissociation constant for water to the dissociation constant for acid. After finding $ {{K}_{h}} $ we will find the degree of hydrolysis which will give us the percentage hydrolysis for $ NaCN $ .
Formula Used: $ {{K}_{h}}=\dfrac{{{K}_{w}}}{{{K}_{a}}} $ where $ {{K}_{h}} $ hydrolysis equilibrium constant
$ {{K}_{w}} $ dissociation constant for water
$ {{K}_{a}} $ dissociation constant for acid.
Complete Step By Step Solution
Given, $ {{K}_{a}} $ = $ 1\cdot 3\times {{10}^{-9}} $ and $ {{K}_{w}} $ = $ 1\cdot 0\times {{10}^{-14}} $
The reaction will be given as- $ NaCN+{{H}_{2}}O\rightleftharpoons NaOH+HCN $ where $ NaCN $ is salt $ NaOH $ is base and $ HCN $ is acid.
$ {{K}_{h}} $ is given as- $ \dfrac{[HCN][O{{H}^{-}}]}{[C{{N}^{-}}]} $ and $ {{K}_{w}} $ is given as- $ [{{H}^{+}}][O{{H}^{-}}] $
Dissociation of HCN will be- $ HCN\rightleftharpoons {{H}^{+}}+C{{N}^{-}} $
So, dissociation constant for an acid will be, $ {{K}_{a}} $ $ =\dfrac{[{{H}^{+}}][C{{N}^{-}}]}{[HCN]} $
So, $ \dfrac{{{K}_{w}}}{{{K}_{a}}}=\dfrac{[{{H}^{+}}][O{{H}^{-}}][HCN]}{[{{H}^{+}}][C{{N}^{-}}]}=\dfrac{[O{{H}^{-}}][HCN]}{[C{{N}^{-}}]}={{K}_{h}} $
Therefore, $ {{K}_{h}}=\dfrac{{{K}_{w}}}{{{K}_{a}}} $
$ \begin{align}
& \Rightarrow {{K}_{h}}=\dfrac{1\cdot 0\times {{10}^{-14}}}{1\cdot 3\times {{10}^{-9}}} \\
& \Rightarrow 0\cdot 769\times {{10}^{-14+9}} \\
& \Rightarrow 0\cdot 769\times {{10}^{-5}} \\
\end{align} $
Let ‘h’ be the degree of hydrolysis and ‘c’ be the concentration of given salt which is $ \dfrac{N}{80} $ .
So, concentration for $ O{{H}^{-}}\,and\,HCN=hc $
And $ [C{{N}^{-}}]=(1-h)c $
Therefore, we get, $ {{K}_{h}} $ = $ \dfrac{[HCN][O{{H}^{-}}]}{[C{{N}^{-}}]} $ $ =\dfrac{hc\times hc}{(1-h)c} $ (‘h’ is very small because HCN is a weak acid so degree of hydrolysis will be less for its salt so we can ignore h in denominator)
$ \Rightarrow {{K}_{h}}=\dfrac{{{h}^{2}}{{c}^{2}}}{1\times c}={{h}^{2}}c $
$ \Rightarrow h=\sqrt{\dfrac{{{K}_{h}}}{c}} $
$ \Rightarrow \sqrt{\dfrac{0\cdot 769\times {{10}^{-5}}\times 80}{1}} $
$ \Rightarrow \sqrt{61\cdot 52\times {{10}^{-5}}} $
$ \Rightarrow \sqrt{615\cdot 2\times {{10}^{-6}}} $
$ \Rightarrow 24\cdot 8\times {{10}^{-3}} $
$ \Rightarrow 2\cdot 48% $
So, the correct choice is (A).
Note
Hydrolysis is defined as dissolving a salt of weak acid or weak base in water. It helps in breaking down proteins and fats. The higher the $ {{K}_{a}} $ value, the greater the no. of hydrogen ions liberated per mole of acid in the solution and hence stronger is the acid. Low values of $ {{K}_{a}} $ means that the acid does not dissociate well and that it is a weak acid. The more easily the acid dissociates, and the stronger it is i.e. the weaker the base it is. Oftentimes, the $ {{K}_{a}} $ value is expressed by using the $ p{{K}_{a}} $ . The larger the value of $ p{{K}_{a}} $ , the smaller the extent of dissociation i.e. ability to donate a proton in aqueous solution is less.
Formula Used: $ {{K}_{h}}=\dfrac{{{K}_{w}}}{{{K}_{a}}} $ where $ {{K}_{h}} $ hydrolysis equilibrium constant
$ {{K}_{w}} $ dissociation constant for water
$ {{K}_{a}} $ dissociation constant for acid.
Complete Step By Step Solution
Given, $ {{K}_{a}} $ = $ 1\cdot 3\times {{10}^{-9}} $ and $ {{K}_{w}} $ = $ 1\cdot 0\times {{10}^{-14}} $
The reaction will be given as- $ NaCN+{{H}_{2}}O\rightleftharpoons NaOH+HCN $ where $ NaCN $ is salt $ NaOH $ is base and $ HCN $ is acid.
$ {{K}_{h}} $ is given as- $ \dfrac{[HCN][O{{H}^{-}}]}{[C{{N}^{-}}]} $ and $ {{K}_{w}} $ is given as- $ [{{H}^{+}}][O{{H}^{-}}] $
Dissociation of HCN will be- $ HCN\rightleftharpoons {{H}^{+}}+C{{N}^{-}} $
So, dissociation constant for an acid will be, $ {{K}_{a}} $ $ =\dfrac{[{{H}^{+}}][C{{N}^{-}}]}{[HCN]} $
So, $ \dfrac{{{K}_{w}}}{{{K}_{a}}}=\dfrac{[{{H}^{+}}][O{{H}^{-}}][HCN]}{[{{H}^{+}}][C{{N}^{-}}]}=\dfrac{[O{{H}^{-}}][HCN]}{[C{{N}^{-}}]}={{K}_{h}} $
Therefore, $ {{K}_{h}}=\dfrac{{{K}_{w}}}{{{K}_{a}}} $
$ \begin{align}
& \Rightarrow {{K}_{h}}=\dfrac{1\cdot 0\times {{10}^{-14}}}{1\cdot 3\times {{10}^{-9}}} \\
& \Rightarrow 0\cdot 769\times {{10}^{-14+9}} \\
& \Rightarrow 0\cdot 769\times {{10}^{-5}} \\
\end{align} $
Let ‘h’ be the degree of hydrolysis and ‘c’ be the concentration of given salt which is $ \dfrac{N}{80} $ .
So, concentration for $ O{{H}^{-}}\,and\,HCN=hc $
And $ [C{{N}^{-}}]=(1-h)c $
Therefore, we get, $ {{K}_{h}} $ = $ \dfrac{[HCN][O{{H}^{-}}]}{[C{{N}^{-}}]} $ $ =\dfrac{hc\times hc}{(1-h)c} $ (‘h’ is very small because HCN is a weak acid so degree of hydrolysis will be less for its salt so we can ignore h in denominator)
$ \Rightarrow {{K}_{h}}=\dfrac{{{h}^{2}}{{c}^{2}}}{1\times c}={{h}^{2}}c $
$ \Rightarrow h=\sqrt{\dfrac{{{K}_{h}}}{c}} $
$ \Rightarrow \sqrt{\dfrac{0\cdot 769\times {{10}^{-5}}\times 80}{1}} $
$ \Rightarrow \sqrt{61\cdot 52\times {{10}^{-5}}} $
$ \Rightarrow \sqrt{615\cdot 2\times {{10}^{-6}}} $
$ \Rightarrow 24\cdot 8\times {{10}^{-3}} $
$ \Rightarrow 2\cdot 48% $
So, the correct choice is (A).
Note
Hydrolysis is defined as dissolving a salt of weak acid or weak base in water. It helps in breaking down proteins and fats. The higher the $ {{K}_{a}} $ value, the greater the no. of hydrogen ions liberated per mole of acid in the solution and hence stronger is the acid. Low values of $ {{K}_{a}} $ means that the acid does not dissociate well and that it is a weak acid. The more easily the acid dissociates, and the stronger it is i.e. the weaker the base it is. Oftentimes, the $ {{K}_{a}} $ value is expressed by using the $ p{{K}_{a}} $ . The larger the value of $ p{{K}_{a}} $ , the smaller the extent of dissociation i.e. ability to donate a proton in aqueous solution is less.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

