
When $ PC{l_5} $ was heated in a closed vessel, the pressure increased from $ 1 $ atm to $ 1.5 $ atm. Find the degree of dissociation $ \alpha $ .
Answer
557.4k+ views
Hint: Degree of dissociation is the fraction of a mole of reactant that underwent dissociation. It is represented by $ \alpha $ . Initially, in the container only $ PC{l_5} $ will be there. When we start heating it, it will dissociate into $ PC{l_3} $ and $ C{l_2} $ . Initially the pressure will be due to $ PC{l_5} $ but after attaining equilibrium, $ PC{l_3} $ and $ C{l_2} $ will also contribute to pressure change.
Complete step by step solution
Writing the reaction that will take place on heating $ PC{l_5} $ : $ PC{l_5} \rightleftharpoons PC{l_3} + C{l_2} $
Let the pressure exerted by $ PC{l_5} $ initially be $ P $ . After attaining equilibrium, suppose $ \alpha $ be the degree of dissociation. Pressure due to $ PC{l_5} $ will become $ P $ $ - P\alpha $ and due to $ PC{l_3} $ and $ C{l_2} $ will be $ P\alpha $
$ P - P\alpha = $ Partial pressure due to $ PC{l_5} $
$ P\alpha = $ Partial pressure due to $ PC{l_3} $ and $ C{l_2} $
$ PC{l_5}_{(g)} \rightleftharpoons PC{l_3}_{(g)} + C{l_2}_{(g)} $
$ P = 1 $ atm (initially due to $ PC{l_5} $ )
Final pressure $ = 1.5 $ atm (due to $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ )
Taking the summation of partial pressures of $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ ;
$ \Rightarrow (P - P\alpha ) + P\alpha + P\alpha = 1.5 $
$ \Rightarrow P + P\alpha = 1.5 $
$ \Rightarrow P(1 + \alpha ) = 1.5 $
$ \Rightarrow 1 + \alpha = \dfrac{{1.5}}{1} $ ( $ P = 1 $ )
$ \Rightarrow \alpha = 1.5 - 1 = 0.5 $
$ \therefore \alpha = 0.5 $
So, the degree of dissociation will be $ 0.5 $ .
Note
Degree of dissociation can also be taken as measurement of percentage of reactant converted into product. In this question, we got the value of the degree of dissociation, $ \alpha = 0.5 $ . It means, $ 50\% $ of $ PC{l_5} $ is converted into $ PC{l_3} $ and $ C{l_2} $ . For a reversible dissociation in a chemical equilibrium $ AB \rightleftharpoons A + B $
The dissociation constant $ {K_d} $ is the ratio of undissociated compounds to dissociate compounds.
$ {K_d} = \dfrac{{[A][B]}}{{[AB]}} $ where the bracket represents the equilibrium concentration of the species.
Complete step by step solution
Writing the reaction that will take place on heating $ PC{l_5} $ : $ PC{l_5} \rightleftharpoons PC{l_3} + C{l_2} $
Let the pressure exerted by $ PC{l_5} $ initially be $ P $ . After attaining equilibrium, suppose $ \alpha $ be the degree of dissociation. Pressure due to $ PC{l_5} $ will become $ P $ $ - P\alpha $ and due to $ PC{l_3} $ and $ C{l_2} $ will be $ P\alpha $
$ P - P\alpha = $ Partial pressure due to $ PC{l_5} $
$ P\alpha = $ Partial pressure due to $ PC{l_3} $ and $ C{l_2} $
$ PC{l_5}_{(g)} \rightleftharpoons PC{l_3}_{(g)} + C{l_2}_{(g)} $
| $ PC{l_5}_{(g)}$ | $ PC{l_3}_{(g)}$ | $C{l_2}_{(g)} $ | |
| At time, t $ = 0 $ | $ P $ | $ 0 $ | $ 0 $ |
| At time, t | $ P $ $ - P\alpha $ | $ P\alpha $ | $ P\alpha $ |
$ P = 1 $ atm (initially due to $ PC{l_5} $ )
Final pressure $ = 1.5 $ atm (due to $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ )
Taking the summation of partial pressures of $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ ;
$ \Rightarrow (P - P\alpha ) + P\alpha + P\alpha = 1.5 $
$ \Rightarrow P + P\alpha = 1.5 $
$ \Rightarrow P(1 + \alpha ) = 1.5 $
$ \Rightarrow 1 + \alpha = \dfrac{{1.5}}{1} $ ( $ P = 1 $ )
$ \Rightarrow \alpha = 1.5 - 1 = 0.5 $
$ \therefore \alpha = 0.5 $
So, the degree of dissociation will be $ 0.5 $ .
Note
Degree of dissociation can also be taken as measurement of percentage of reactant converted into product. In this question, we got the value of the degree of dissociation, $ \alpha = 0.5 $ . It means, $ 50\% $ of $ PC{l_5} $ is converted into $ PC{l_3} $ and $ C{l_2} $ . For a reversible dissociation in a chemical equilibrium $ AB \rightleftharpoons A + B $
The dissociation constant $ {K_d} $ is the ratio of undissociated compounds to dissociate compounds.
$ {K_d} = \dfrac{{[A][B]}}{{[AB]}} $ where the bracket represents the equilibrium concentration of the species.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

