
When $ PC{l_5} $ was heated in a closed vessel, the pressure increased from $ 1 $ atm to $ 1.5 $ atm. Find the degree of dissociation $ \alpha $ .
Answer
556.8k+ views
Hint: Degree of dissociation is the fraction of a mole of reactant that underwent dissociation. It is represented by $ \alpha $ . Initially, in the container only $ PC{l_5} $ will be there. When we start heating it, it will dissociate into $ PC{l_3} $ and $ C{l_2} $ . Initially the pressure will be due to $ PC{l_5} $ but after attaining equilibrium, $ PC{l_3} $ and $ C{l_2} $ will also contribute to pressure change.
Complete step by step solution
Writing the reaction that will take place on heating $ PC{l_5} $ : $ PC{l_5} \rightleftharpoons PC{l_3} + C{l_2} $
Let the pressure exerted by $ PC{l_5} $ initially be $ P $ . After attaining equilibrium, suppose $ \alpha $ be the degree of dissociation. Pressure due to $ PC{l_5} $ will become $ P $ $ - P\alpha $ and due to $ PC{l_3} $ and $ C{l_2} $ will be $ P\alpha $
$ P - P\alpha = $ Partial pressure due to $ PC{l_5} $
$ P\alpha = $ Partial pressure due to $ PC{l_3} $ and $ C{l_2} $
$ PC{l_5}_{(g)} \rightleftharpoons PC{l_3}_{(g)} + C{l_2}_{(g)} $
$ P = 1 $ atm (initially due to $ PC{l_5} $ )
Final pressure $ = 1.5 $ atm (due to $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ )
Taking the summation of partial pressures of $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ ;
$ \Rightarrow (P - P\alpha ) + P\alpha + P\alpha = 1.5 $
$ \Rightarrow P + P\alpha = 1.5 $
$ \Rightarrow P(1 + \alpha ) = 1.5 $
$ \Rightarrow 1 + \alpha = \dfrac{{1.5}}{1} $ ( $ P = 1 $ )
$ \Rightarrow \alpha = 1.5 - 1 = 0.5 $
$ \therefore \alpha = 0.5 $
So, the degree of dissociation will be $ 0.5 $ .
Note
Degree of dissociation can also be taken as measurement of percentage of reactant converted into product. In this question, we got the value of the degree of dissociation, $ \alpha = 0.5 $ . It means, $ 50\% $ of $ PC{l_5} $ is converted into $ PC{l_3} $ and $ C{l_2} $ . For a reversible dissociation in a chemical equilibrium $ AB \rightleftharpoons A + B $
The dissociation constant $ {K_d} $ is the ratio of undissociated compounds to dissociate compounds.
$ {K_d} = \dfrac{{[A][B]}}{{[AB]}} $ where the bracket represents the equilibrium concentration of the species.
Complete step by step solution
Writing the reaction that will take place on heating $ PC{l_5} $ : $ PC{l_5} \rightleftharpoons PC{l_3} + C{l_2} $
Let the pressure exerted by $ PC{l_5} $ initially be $ P $ . After attaining equilibrium, suppose $ \alpha $ be the degree of dissociation. Pressure due to $ PC{l_5} $ will become $ P $ $ - P\alpha $ and due to $ PC{l_3} $ and $ C{l_2} $ will be $ P\alpha $
$ P - P\alpha = $ Partial pressure due to $ PC{l_5} $
$ P\alpha = $ Partial pressure due to $ PC{l_3} $ and $ C{l_2} $
$ PC{l_5}_{(g)} \rightleftharpoons PC{l_3}_{(g)} + C{l_2}_{(g)} $
| $ PC{l_5}_{(g)}$ | $ PC{l_3}_{(g)}$ | $C{l_2}_{(g)} $ | |
| At time, t $ = 0 $ | $ P $ | $ 0 $ | $ 0 $ |
| At time, t | $ P $ $ - P\alpha $ | $ P\alpha $ | $ P\alpha $ |
$ P = 1 $ atm (initially due to $ PC{l_5} $ )
Final pressure $ = 1.5 $ atm (due to $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ )
Taking the summation of partial pressures of $ PC{l_5} $ , $ PC{l_3} $ and $ C{l_2} $ ;
$ \Rightarrow (P - P\alpha ) + P\alpha + P\alpha = 1.5 $
$ \Rightarrow P + P\alpha = 1.5 $
$ \Rightarrow P(1 + \alpha ) = 1.5 $
$ \Rightarrow 1 + \alpha = \dfrac{{1.5}}{1} $ ( $ P = 1 $ )
$ \Rightarrow \alpha = 1.5 - 1 = 0.5 $
$ \therefore \alpha = 0.5 $
So, the degree of dissociation will be $ 0.5 $ .
Note
Degree of dissociation can also be taken as measurement of percentage of reactant converted into product. In this question, we got the value of the degree of dissociation, $ \alpha = 0.5 $ . It means, $ 50\% $ of $ PC{l_5} $ is converted into $ PC{l_3} $ and $ C{l_2} $ . For a reversible dissociation in a chemical equilibrium $ AB \rightleftharpoons A + B $
The dissociation constant $ {K_d} $ is the ratio of undissociated compounds to dissociate compounds.
$ {K_d} = \dfrac{{[A][B]}}{{[AB]}} $ where the bracket represents the equilibrium concentration of the species.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

