
When $PC{l_5}$ heated in $2L$ capacity vessel at eq of $40\% $ $PC{l_5}$ dissociate into $PC{l_3}$ and $C{l_2}$. Value of ${K_c}$.
Answer
568.8k+ views
Hint: We can calculate the equilibrium constant of the reaction using the concentrations of $PC{l_5}$, $PC{l_3}$ and $C{l_2}$. We can calculate the value of equilibrium constant by multiplying the concentration of the products and dividing it by the concentration of reactants. We can calculate the concentration of the reactants and products, their moles and volume.
Complete answer:
Given data contains,
Volume of the equilibrium mixture is $2L$.
Degree of dissociation $\left( \alpha \right)$ is $40\% = \dfrac{{40}}{{100}} = 0.4$.
We can write the chemical reaction as,
$PC{l_5}\left( g \right) \rightleftharpoons PC{l_3}\left( g \right) + C{l_2}\left( g \right)$
We can write the ICE table for the given reaction as,
\begin{matrix}
&PC{l_5}\left( g \right)\rightleftharpoons&PC{l_3}\left( g \right) +&C{l_2}\left( g \right)\\
\text{Initial}&{{\text{2mol}}}&{{\text{0mol}}}&{{\text{0mol}}}\\
\text{Change}&{2\alpha {\text{mol}}}&{2\alpha{\text{ mol}}}&{2\alpha {\text{mol}}}\\
\text{Equilibrium}&{2\left( {1 - \alpha } \right) \text{mol}}&{2\alpha \text{mol}}&{2\alpha \text{mol}}
\end{matrix}
We can calculate the molar concentrations of $PC{l_5}$, $PC{l_3}$ and $C{l_2}$ of the mixture using the values of degree of dissociation and volume.
We can calculate the molar concentration of $PC{l_5}$ as,
$\left[ {PC{l_5}\left( g \right)} \right] = \dfrac{{2\left( {1 - \alpha } \right)}}{V}$
Let us substitute the value of degree of dissociation and volume.
$\left[ {PC{l_5}\left( g \right)} \right] = \dfrac{{2\left( {1 - 0.4} \right)}}{2}$
$\left[ {PC{l_5}\left( g \right)} \right] = 0.6mol/L$
The molar concentration of $PC{l_5}$ is $0.6mol/L$.
We can calculate the molar concentration of $PC{l_3}$ as,
$\left[ {PC{l_3}\left( g \right)} \right] = \dfrac{{2\left( \alpha \right)}}{V}$
Let us substitute the value of degree of dissociation and volume.
$\left[ {PC{l_3}\left( g \right)} \right] = \dfrac{{2\left( {0.4} \right)}}{2}$
$\left[ {PC{l_3}\left( g \right)} \right] = 0.4mol/L$
The molar concentration of $PC{l_3}$ is $0.4mol/L$.
We can calculate the molar concentration of $C{l_2}$ as,
$\left[ {Cl{ _2}\left( g \right)} \right] = \dfrac{{2\left( \alpha \right)}}{V}$
Let us substitute the value of degree of dissociation and volume.
$\left[ {C{l_2}\left( g \right)} \right] = \dfrac{{2\left( {0.4} \right)}}{2}$
$\left[ {C{l_2}\left( g \right)} \right] = 0.4mol/L$
The molar concentration of $C{l_2}$ is $0.4mol/L$.
We know that the formula to calculate the equilibrium constant is written as,
${{\text{K}}_{\text{c}}}{\text{ = }}\dfrac{{\left[ {{\text{Products}}} \right]}}{{\left[ {{\text{Reactants}}} \right]}}$
We can write the rate law for the given reaction as,
${K_c} = \dfrac{{\left[ {PC{l_3}\left( g \right)} \right]\left[ {C{l_2}\left( g \right)} \right]}}{{\left[ {PC{l_5}\left( g \right)} \right]}}$
Let us now substitute the value of molar concentrations of $PC{l_5}$, $PC{l_3}$ and $C{l_2}$.
We can now calculate the equilibrium constant as,
${K_c} = \dfrac{{\left[ {0.4} \right]\left[ {0.4} \right]}}{{\left[ {0.6} \right]}}$
${K_c} = 0.2666$
The value of equilibrium constant is $0.2666mol/L$.
Note:
-We can determine the composition of the system at equilibrium using the initial composition of the system and known values of equilibrium constant.
-The reciprocal of forward reaction gives the equilibrium expression of the reverse reaction.
-The different types of equilibrium constants are stability constants, binding constants, formation constants, dissociation constants, and association constants.
-Factors such as temperature, ionic strength, and solvents affect the value of equilibrium constant.
Complete answer:
Given data contains,
Volume of the equilibrium mixture is $2L$.
Degree of dissociation $\left( \alpha \right)$ is $40\% = \dfrac{{40}}{{100}} = 0.4$.
We can write the chemical reaction as,
$PC{l_5}\left( g \right) \rightleftharpoons PC{l_3}\left( g \right) + C{l_2}\left( g \right)$
We can write the ICE table for the given reaction as,
\begin{matrix}
&PC{l_5}\left( g \right)\rightleftharpoons&PC{l_3}\left( g \right) +&C{l_2}\left( g \right)\\
\text{Initial}&{{\text{2mol}}}&{{\text{0mol}}}&{{\text{0mol}}}\\
\text{Change}&{2\alpha {\text{mol}}}&{2\alpha{\text{ mol}}}&{2\alpha {\text{mol}}}\\
\text{Equilibrium}&{2\left( {1 - \alpha } \right) \text{mol}}&{2\alpha \text{mol}}&{2\alpha \text{mol}}
\end{matrix}
We can calculate the molar concentrations of $PC{l_5}$, $PC{l_3}$ and $C{l_2}$ of the mixture using the values of degree of dissociation and volume.
We can calculate the molar concentration of $PC{l_5}$ as,
$\left[ {PC{l_5}\left( g \right)} \right] = \dfrac{{2\left( {1 - \alpha } \right)}}{V}$
Let us substitute the value of degree of dissociation and volume.
$\left[ {PC{l_5}\left( g \right)} \right] = \dfrac{{2\left( {1 - 0.4} \right)}}{2}$
$\left[ {PC{l_5}\left( g \right)} \right] = 0.6mol/L$
The molar concentration of $PC{l_5}$ is $0.6mol/L$.
We can calculate the molar concentration of $PC{l_3}$ as,
$\left[ {PC{l_3}\left( g \right)} \right] = \dfrac{{2\left( \alpha \right)}}{V}$
Let us substitute the value of degree of dissociation and volume.
$\left[ {PC{l_3}\left( g \right)} \right] = \dfrac{{2\left( {0.4} \right)}}{2}$
$\left[ {PC{l_3}\left( g \right)} \right] = 0.4mol/L$
The molar concentration of $PC{l_3}$ is $0.4mol/L$.
We can calculate the molar concentration of $C{l_2}$ as,
$\left[ {Cl{ _2}\left( g \right)} \right] = \dfrac{{2\left( \alpha \right)}}{V}$
Let us substitute the value of degree of dissociation and volume.
$\left[ {C{l_2}\left( g \right)} \right] = \dfrac{{2\left( {0.4} \right)}}{2}$
$\left[ {C{l_2}\left( g \right)} \right] = 0.4mol/L$
The molar concentration of $C{l_2}$ is $0.4mol/L$.
We know that the formula to calculate the equilibrium constant is written as,
${{\text{K}}_{\text{c}}}{\text{ = }}\dfrac{{\left[ {{\text{Products}}} \right]}}{{\left[ {{\text{Reactants}}} \right]}}$
We can write the rate law for the given reaction as,
${K_c} = \dfrac{{\left[ {PC{l_3}\left( g \right)} \right]\left[ {C{l_2}\left( g \right)} \right]}}{{\left[ {PC{l_5}\left( g \right)} \right]}}$
Let us now substitute the value of molar concentrations of $PC{l_5}$, $PC{l_3}$ and $C{l_2}$.
We can now calculate the equilibrium constant as,
${K_c} = \dfrac{{\left[ {0.4} \right]\left[ {0.4} \right]}}{{\left[ {0.6} \right]}}$
${K_c} = 0.2666$
The value of equilibrium constant is $0.2666mol/L$.
Note:
-We can determine the composition of the system at equilibrium using the initial composition of the system and known values of equilibrium constant.
-The reciprocal of forward reaction gives the equilibrium expression of the reverse reaction.
-The different types of equilibrium constants are stability constants, binding constants, formation constants, dissociation constants, and association constants.
-Factors such as temperature, ionic strength, and solvents affect the value of equilibrium constant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

