Answer
Verified
355.5k+ views
Hint: The tendency for an atom of a certain chemical element to attract shared electrons (or electron density) while forming a chemical connection is known as electronegativity. The electronegativity of an atom is determined by its atomic number as well as the distance between its valence electrons and the charged nucleus.
Complete answer:
The technique of computation first presented by Linus Pauling is the most widely utilised. On a relative scale ranging from 0.79 to 3.98 (hydrogen = 2.20), this yields a dimensionless number known as the Pauling scale ( $ {\chi _r} $ ). When different calculation methods are employed, it is customary to quote the findings on a scale that spans the same range of numerical values: this is known as an electronegativity in Pauling units. Electronegativity is a characteristic of an atom in a molecule, not a property of an atom alone, as is commonly assumed.
The notion of electronegativity was initially suggested by Linus Pauling in 1932 to explain why the covalent connection between two distinct atoms (A–B) is stronger than the average of the A–A and B–B bonds. This "extra stability" of the heteronuclear bond is owing to the contribution of ionic canonical forms to the bonding, according to valence bond theory, of which Pauling was a prominent proponent.
The electronegativity difference between atoms A and B is determined by:
$ |{\chi _{\text{A}}} - {\chi _{\text{B}}}| = {({\text{eV}})^{ - 1/2}}\sqrt {{E_{\text{d}}}({\text{AB}}) - \dfrac{{{E_{\text{d}}}({\text{AA}}) + {E_{\text{d}}}({\text{BB}})}}{2}} $
The polarity of molecules may be predicted using Pauling's electronegativity values for elements. When the electronegativity difference between two elements is large, the molecule is extremely polar; when the electronegativities of two elements are close or nearly identical, the bond formed between them is non-polar.
Hence option A is correct.
Note:
Pauling was able to create relative values for all of the elements by assigning a value of 4.0 to Fluorine (the most electronegative element). This was the first time he discovered that an atom's electronegativity was controlled by its location on the periodic table, and that electronegativity tended to rise as you travelled from left to right and bottom to top along the chart. From Fluorine (most electronegative = 4.0) to Francium (least electronegative = 0.7), Pauling's scale of electronegativity has a wide range of values.
Complete answer:
The technique of computation first presented by Linus Pauling is the most widely utilised. On a relative scale ranging from 0.79 to 3.98 (hydrogen = 2.20), this yields a dimensionless number known as the Pauling scale ( $ {\chi _r} $ ). When different calculation methods are employed, it is customary to quote the findings on a scale that spans the same range of numerical values: this is known as an electronegativity in Pauling units. Electronegativity is a characteristic of an atom in a molecule, not a property of an atom alone, as is commonly assumed.
The notion of electronegativity was initially suggested by Linus Pauling in 1932 to explain why the covalent connection between two distinct atoms (A–B) is stronger than the average of the A–A and B–B bonds. This "extra stability" of the heteronuclear bond is owing to the contribution of ionic canonical forms to the bonding, according to valence bond theory, of which Pauling was a prominent proponent.
The electronegativity difference between atoms A and B is determined by:
$ |{\chi _{\text{A}}} - {\chi _{\text{B}}}| = {({\text{eV}})^{ - 1/2}}\sqrt {{E_{\text{d}}}({\text{AB}}) - \dfrac{{{E_{\text{d}}}({\text{AA}}) + {E_{\text{d}}}({\text{BB}})}}{2}} $
The polarity of molecules may be predicted using Pauling's electronegativity values for elements. When the electronegativity difference between two elements is large, the molecule is extremely polar; when the electronegativities of two elements are close or nearly identical, the bond formed between them is non-polar.
Hence option A is correct.
Note:
Pauling was able to create relative values for all of the elements by assigning a value of 4.0 to Fluorine (the most electronegative element). This was the first time he discovered that an atom's electronegativity was controlled by its location on the periodic table, and that electronegativity tended to rise as you travelled from left to right and bottom to top along the chart. From Fluorine (most electronegative = 4.0) to Francium (least electronegative = 0.7), Pauling's scale of electronegativity has a wide range of values.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE