
Particle nature and wave nature of electromagnetic waves and electrons can be represented by:
(A) photo-electricity and electron microscopy.
(B) light is refracted and diffracted.
(C) X-rays are diffracted, reflected by thick metal sheets.
(D) electrons having small mass, deflected by the metal sheet.
Answer
568.2k+ views
Hint: Certain properties of matter can only explain particle nature of matter. Similarly, certain properties of radiation can only explain wave nature. However, there are certain properties that can explain the dual nature of the particles and waves.
Complete answer:
Particle nature and wave nature of electromagnetic waves and electrons is called dual nature or wave particle dualism. According to this wave particle dualism, a wave can also exhibit particle behaviour and at the same time, a particle can also exhibit wave nature.
A vibration or disturbance describes the wave. The wave energy is either stationary or it is continuously moving. We can assign a frequency to the wave, so as to distinguish it from the particle.
We can characterize the particle by its mass, shape and physical dimensions.
Similar to a wave, a particle is either stationary or it is continuously moving. But unlike waves, we are sure about the position of the particle in space.
We cannot assign a frequency to the particle.
Particle nature and wave nature of electromagnetic waves and electrons can be represented by photo-electricity and electron microscopy. Photoelectricity illustrates the particle nature of waves. A photon is a wave particle. Electron microscopy represents the wave behaviour of a particle.
Hence, the correct option is the option (A).
Note: According to the de−Broglie hypothesis, the following equation gives the relationship between the wavelength and momentum of a moving particle.
\[\lambda = \dfrac{h}{p}\]
Here \[\lambda \] represents the wavelength, h represents the Planck’s constant and p represents the momentum of the moving particle.
Complete answer:
Particle nature and wave nature of electromagnetic waves and electrons is called dual nature or wave particle dualism. According to this wave particle dualism, a wave can also exhibit particle behaviour and at the same time, a particle can also exhibit wave nature.
A vibration or disturbance describes the wave. The wave energy is either stationary or it is continuously moving. We can assign a frequency to the wave, so as to distinguish it from the particle.
We can characterize the particle by its mass, shape and physical dimensions.
Similar to a wave, a particle is either stationary or it is continuously moving. But unlike waves, we are sure about the position of the particle in space.
We cannot assign a frequency to the particle.
Particle nature and wave nature of electromagnetic waves and electrons can be represented by photo-electricity and electron microscopy. Photoelectricity illustrates the particle nature of waves. A photon is a wave particle. Electron microscopy represents the wave behaviour of a particle.
Hence, the correct option is the option (A).
Note: According to the de−Broglie hypothesis, the following equation gives the relationship between the wavelength and momentum of a moving particle.
\[\lambda = \dfrac{h}{p}\]
Here \[\lambda \] represents the wavelength, h represents the Planck’s constant and p represents the momentum of the moving particle.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

