
What part of the ear converts sound waves into mechanical vibrations?
Answer
510.6k+ views
Hint: The vibrations from the eardrum create the oscillations into motion. The oscillations are actually tiny bones — the smallest in the human body. The three bones are named after their shapes: the malleus (hammer), incus (anvil) and stapes (stirrup). The oscillations further amplify the sound.
Complete answer:
The vibrations from the eardrum create the oscillations into motion. The oscillations are literally tiny bones — the smallest within the physical body. The three bones are named after their shapes: the malleus (hammer), incus (anvil) and stapes (stirrup). The oscillations further amplify the sound.
The sound waves enter the internal ear then into the cochlea, a snail-shaped organ. The cochlea is crammed with a fluid that moves in response to the vibrations from the fenestra ovalis because the fluid moves, 25,000 nerve endings are set into motion. These nerve endings transform the vibrations into electrical impulses that then follow the eighth nerve (auditory nerve) to the brain.
The brain then interprets these signals, and this is mostly how we hear.
The internal ear also contains the vestibular organ that's liable for balance.
The sound waves enter the ear through the pinna and auditory meatus and reach the tympanum or eardrum, where they're converted into mechanical vibrations.
Sound is transmitted through the air as sound waves from the environment. The sound waves are gathered by the external ear and sent down the auditory meatus to the eardrum.
The sound waves cause the eardrum to vibrate, which sets the canter ear’s three tiny bones into motion. The three bones’ motion causes the fluid within the internal ear, or cochlea, to move.
The movement of the fluid within the internal ear causes the hair cells within the cochlea to bend. The hair cells change the movement into electrical impulses.
These electrical impulses are transmitted to the hearing (auditory) nerve and up to the brain, where they're interpreted as sound.
Note:
Hearing is a process that is naturally occurring. All the organisms have different hearing levels and decibels. Human ear can hear from 20Hz to 20,000 Hz. Hertz here is telling the gearing frequency. If the frequency of sound is less than 20 Hz it is called infrasonic sounds and if it is more than 20,000Hz it is called ultrasonic sounds.
Complete answer:
The vibrations from the eardrum create the oscillations into motion. The oscillations are literally tiny bones — the smallest within the physical body. The three bones are named after their shapes: the malleus (hammer), incus (anvil) and stapes (stirrup). The oscillations further amplify the sound.
The sound waves enter the internal ear then into the cochlea, a snail-shaped organ. The cochlea is crammed with a fluid that moves in response to the vibrations from the fenestra ovalis because the fluid moves, 25,000 nerve endings are set into motion. These nerve endings transform the vibrations into electrical impulses that then follow the eighth nerve (auditory nerve) to the brain.
The brain then interprets these signals, and this is mostly how we hear.
The internal ear also contains the vestibular organ that's liable for balance.
The sound waves enter the ear through the pinna and auditory meatus and reach the tympanum or eardrum, where they're converted into mechanical vibrations.
Sound is transmitted through the air as sound waves from the environment. The sound waves are gathered by the external ear and sent down the auditory meatus to the eardrum.
The sound waves cause the eardrum to vibrate, which sets the canter ear’s three tiny bones into motion. The three bones’ motion causes the fluid within the internal ear, or cochlea, to move.
The movement of the fluid within the internal ear causes the hair cells within the cochlea to bend. The hair cells change the movement into electrical impulses.
These electrical impulses are transmitted to the hearing (auditory) nerve and up to the brain, where they're interpreted as sound.
Note:
Hearing is a process that is naturally occurring. All the organisms have different hearing levels and decibels. Human ear can hear from 20Hz to 20,000 Hz. Hertz here is telling the gearing frequency. If the frequency of sound is less than 20 Hz it is called infrasonic sounds and if it is more than 20,000Hz it is called ultrasonic sounds.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

