
$p$ is prime and $n$ is a positive integer and $n + p = 2000$. LCM of $n$ and $p$ is $21879$. Then find $n$.
Answer
582k+ views
Hint: If $n$ is a multiple of $p$, then the LCM of $n$ and $p$ will be $n$. When $n$ and $p$ are relative prime numbers, then the LCM of $n$ and \[p\] will be $np$.
Later find the value of p in terms of n and substitute in the equation given in the question. Solving the equation we can find the value of n.
Complete step-by-step answer:
We know that if $n$ is a multiple of $p$, then the LCM of $n$and $p$will be $n$.
Thus, $n = 21879$
This is not possible because $n + p = 2000$
Thus, $n$ and $p$ are relative prime numbers.
So, LCM of $n$ and \[p\] will be $np$.
Thus, $np = 21879$
$ \Rightarrow p = \dfrac{{21879}}{n}$..........….. (1)
We have, $n + p = 2000$..........….. (2)
$ \Rightarrow n + \dfrac{{21879}}{n} = 2000$ [Using(1)]
$ \Rightarrow \dfrac{{{n^2} + 21879}}{n} = 2000$
$ \Rightarrow {n^2} + 21879 = 2000n$
$ \Rightarrow {n^2} - 2000n + 21879 = 0$..........….. (3)
Now use factoring method to solve the above quadratic equation,
$ \Rightarrow {n^2} - \left( {11 + 1989} \right)n + 21879 = 0$
$ \Rightarrow {n^2} - 11n - 1989n + 21879 = 0$
$ \Rightarrow n\left( {n - 11} \right) - 1989\left( {n - 11} \right) = 0$
$ \Rightarrow \left( {n - 11} \right)\left( {n - 1989} \right) = 0$
$ \Rightarrow n = 11$ or $n = 1989$
Thus, \[p = 2000 - n\] [Using(2)]
$p = 2000 - 11$ or $p = 2000 - 1989$
$p = 1989$ or $p = 11$
Since, $p$ is prime, so $p$ cannot be $1989$.
Thus, $n = 1989$ and $p = 11$.
Note: The quadratic equation (3) can also be solved by the quadratic formula which is given by,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Compare the quadratic equation (3), i.e., ${n^2} - 2000n + 21879 = 0$ with the standard quadratic equation $a{x^2} + bx + c = 0$, we get-
$a = 1,b = - 2000,c = 21879$ and $x = n$
Now, $n = \dfrac{{ - \left( { - 2000} \right) \pm \sqrt {{{\left( { - 2000} \right)}^2} - 4 \times 1 \times 21879} }}{{2 \times 1}}$
$ \Rightarrow n = \dfrac{{2000 \pm \sqrt {4000000 - 87516} }}{2}$
$ \Rightarrow n = \dfrac{{2000 \pm \sqrt {3912484} }}{2}$
$ \Rightarrow n = \dfrac{{2000 \pm 1978}}{2}$
$ \Rightarrow n = \dfrac{{2000 + 1978}}{2}$ or $n = \dfrac{{2000 - 1978}}{2}$
$ \Rightarrow n = \dfrac{{3978}}{2}$ or $n = \dfrac{{22}}{2}$
$ \Rightarrow n = 1989$ or $n = 11$
Later find the value of p in terms of n and substitute in the equation given in the question. Solving the equation we can find the value of n.
Complete step-by-step answer:
We know that if $n$ is a multiple of $p$, then the LCM of $n$and $p$will be $n$.
Thus, $n = 21879$
This is not possible because $n + p = 2000$
Thus, $n$ and $p$ are relative prime numbers.
So, LCM of $n$ and \[p\] will be $np$.
Thus, $np = 21879$
$ \Rightarrow p = \dfrac{{21879}}{n}$..........….. (1)
We have, $n + p = 2000$..........….. (2)
$ \Rightarrow n + \dfrac{{21879}}{n} = 2000$ [Using(1)]
$ \Rightarrow \dfrac{{{n^2} + 21879}}{n} = 2000$
$ \Rightarrow {n^2} + 21879 = 2000n$
$ \Rightarrow {n^2} - 2000n + 21879 = 0$..........….. (3)
Now use factoring method to solve the above quadratic equation,
$ \Rightarrow {n^2} - \left( {11 + 1989} \right)n + 21879 = 0$
$ \Rightarrow {n^2} - 11n - 1989n + 21879 = 0$
$ \Rightarrow n\left( {n - 11} \right) - 1989\left( {n - 11} \right) = 0$
$ \Rightarrow \left( {n - 11} \right)\left( {n - 1989} \right) = 0$
$ \Rightarrow n = 11$ or $n = 1989$
Thus, \[p = 2000 - n\] [Using(2)]
$p = 2000 - 11$ or $p = 2000 - 1989$
$p = 1989$ or $p = 11$
Since, $p$ is prime, so $p$ cannot be $1989$.
Thus, $n = 1989$ and $p = 11$.
Note: The quadratic equation (3) can also be solved by the quadratic formula which is given by,
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Compare the quadratic equation (3), i.e., ${n^2} - 2000n + 21879 = 0$ with the standard quadratic equation $a{x^2} + bx + c = 0$, we get-
$a = 1,b = - 2000,c = 21879$ and $x = n$
Now, $n = \dfrac{{ - \left( { - 2000} \right) \pm \sqrt {{{\left( { - 2000} \right)}^2} - 4 \times 1 \times 21879} }}{{2 \times 1}}$
$ \Rightarrow n = \dfrac{{2000 \pm \sqrt {4000000 - 87516} }}{2}$
$ \Rightarrow n = \dfrac{{2000 \pm \sqrt {3912484} }}{2}$
$ \Rightarrow n = \dfrac{{2000 \pm 1978}}{2}$
$ \Rightarrow n = \dfrac{{2000 + 1978}}{2}$ or $n = \dfrac{{2000 - 1978}}{2}$
$ \Rightarrow n = \dfrac{{3978}}{2}$ or $n = \dfrac{{22}}{2}$
$ \Rightarrow n = 1989$ or $n = 11$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

