
Out of 7 consonants and 4 vowels, words are to be formed each having only 3 consonants and 2 vowels. The number of such words formed is :
(a)210
(b)25200
(c)2520
(d)302400
Answer
598.5k+ views
Hint: Use the formula: Number of words formed = Number of ways of selecting 3 consonants $\times $ number of ways of selecting 2 vowels $\times $ total permutations of 5 alphabets .
Complete step by step answer:
Number of ways of selecting 3 consonants is ${}^{7}{{C}_{3}}=35$, number of ways of selecting 2 vowels is ${}^{4}{{C}_{2}}=6$, and total permutations of 5 alphabets is $5!=120$.
We are given that out of 7 consonants and 4 vowels, words are to be formed each having only 3 consonants and 2 vowels.
We need to find the number of such words that can be formed.
We will use the principle of combinations to solve this question.
We know that the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
In this question, we will need 3 consonants out of the 7 consonants and 2 vowels out of the 4 vowels.
First, we will find the number of ways to select 3 out of 7 consonants. This is given by:
${}^{7}{{C}_{3}}=\dfrac{7!}{3!4!}$
${}^{7}{{C}_{3}}=35$ …(1)
Now, we will find the number of ways to select 2 out of 4 consonants. This is given by:
${}^{4}{{C}_{2}}=\dfrac{4!}{2!2!}$
${}^{4}{{C}_{2}}=6$ …(2)
So, now we have all the letters which are required.
We now have to arrange these letters to form different words by making different permutations using these letters.
We know that the number of permutations of n alphabets is equal to $n!$.
We have 3 consonants and 2 vowels which makes it 5 alphabets.
So, the number of permutations using 5 alphabets is equal to $5!=120$ …(3)
We will now find the total number of required words formed by multiplying (1), (2), and (3)
Number of words formed = Number of ways of selecting 3 consonants $\times $ number of ways of selecting 2 vowels $\times $ total permutations of 5 alphabets
Number of words formed$={}^{7}{{C}_{3}}\times {}^{4}{{C}_{2}}\times 5!$
$=35\times 6\times 120=25200$
So, the total number of words formed are 25200
Hence, option (b) is correct.
Note: In this question, it is very important to know the following formulae: the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, and the number of permutations of n alphabets is equal to $n!$.
Complete step by step answer:
Number of ways of selecting 3 consonants is ${}^{7}{{C}_{3}}=35$, number of ways of selecting 2 vowels is ${}^{4}{{C}_{2}}=6$, and total permutations of 5 alphabets is $5!=120$.
We are given that out of 7 consonants and 4 vowels, words are to be formed each having only 3 consonants and 2 vowels.
We need to find the number of such words that can be formed.
We will use the principle of combinations to solve this question.
We know that the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}$
${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$
In this question, we will need 3 consonants out of the 7 consonants and 2 vowels out of the 4 vowels.
First, we will find the number of ways to select 3 out of 7 consonants. This is given by:
${}^{7}{{C}_{3}}=\dfrac{7!}{3!4!}$
${}^{7}{{C}_{3}}=35$ …(1)
Now, we will find the number of ways to select 2 out of 4 consonants. This is given by:
${}^{4}{{C}_{2}}=\dfrac{4!}{2!2!}$
${}^{4}{{C}_{2}}=6$ …(2)
So, now we have all the letters which are required.
We now have to arrange these letters to form different words by making different permutations using these letters.
We know that the number of permutations of n alphabets is equal to $n!$.
We have 3 consonants and 2 vowels which makes it 5 alphabets.
So, the number of permutations using 5 alphabets is equal to $5!=120$ …(3)
We will now find the total number of required words formed by multiplying (1), (2), and (3)
Number of words formed = Number of ways of selecting 3 consonants $\times $ number of ways of selecting 2 vowels $\times $ total permutations of 5 alphabets
Number of words formed$={}^{7}{{C}_{3}}\times {}^{4}{{C}_{2}}\times 5!$
$=35\times 6\times 120=25200$
So, the total number of words formed are 25200
Hence, option (b) is correct.
Note: In this question, it is very important to know the following formulae: the number of ways to choose r things from a total of n things is ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, and the number of permutations of n alphabets is equal to $n!$.
Recently Updated Pages
How many cricket teams with members of eleven each class 11 maths CBSE

In the thermodynamic process helium gas obeys the law class 11 chemistry CBSE

Who is the worlds most dangerous animal What has he class 11 english CBSE

According to Lewis the ligands are A Acidic in nature class 11 chemistry CBSE

A thin bar magnet is cut into two equal parts as shown class 11 physics CBSE

What is the difference between petroleum gas and natural class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

