
Out of 100 students, 15 passed in English, 12 passed in Mathematics, 8 in Science, 6 in English & Mathematics, 7Mathematics and Science, 4 English & Science, 4 in all the three. Find how many passes
1.In English & Mathematics but not in Science
2.In Mathematics & Science but not in English
3.In only Mathematics
4.In more than one subject only
Answer
556.5k+ views
Hint: Draw Venn-diagram for three sets, start from all three regions then complete for two common sets then thirdly for the full set also label the regions so that we can easily solve the questions in different questions in different parts.
Formula used:
1.$n\left( AuBuC \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)=n\left( A\bigcap B \right)-n\left( B\bigcap C \right)-n\left( A\bigcap C \right)+n\left( A\bigcap B\bigcap C \right)$
2.$\text{Number of students studying English }\!\!\And\!\!\text{ Maths but not science}=n\left( E\bigcap M \right)-n\left( E\bigcap M\bigcap S \right)$
3.$\text{Number}$ $\text{Math }\!\!\And\!\!\text{ Science but not English}=n\left( M\bigcap S \right)-n\left( E\bigcap M\bigcap S \right)$
4.$\text{No of students study only Mathematics}=n\left( E\bigcap M \right)-n\left( S\bigcap M \right)+n\left( E\bigcap M\bigcap B \right)$
5.$\text{More than one subject}=n\left( E\bigcap M \right)+n\left( E\bigcap S \right)-n\left( E\bigcap M\bigcap S \right)$
Complete step-by-step answer:
$\begin{align}
& \text{Total number of students}=100 \\
& \text{ Number of students }n\left( E \right)=15 \\
& \text{ }n\left( M \right)=12 \\
& \text{ }n\left( S \right)=8 \\
\end{align}$
$\begin{align}
& \text{ }E\text{ and }M\text{ }n\left( E\bigcap M \right)=6 \\
& \text{ }n\left( M\bigcap S \right)=7 \\
& \text{ }n\left( E\bigcap S \right)=4 \\
& \text{ }n\left( E\bigcap S\bigcap M \right)=4 \\
\end{align}$
\[\begin{align}
& n\left( E\bigcap S\bigcap M \right)=n\left( E \right)+n\left( S \right)+n\left( M \right)-n\left( E\bigcap S \right) \\
& \text{ }-n\left( S\bigcap M \right)-n\left( M\bigcap E \right)+n\left( M\bigcap E\bigcap S \right) \\
\end{align}\]
\[\begin{align}
& =15+12+8-4-7-6+4 \\
& \text{ }=22 \\
\end{align}\]
$\begin{align}
& \text{Number of students those who study either of the three subjects}=22 \\
& a+b+c+d+e+f+g=22 \\
& \text{Therefore number of students those who study none of the subject}=100-22 \\
& \text{ }=78 \\
& \text{ }=h \\
\end{align}$
$\text{Number of students study English }\!\!\And\!\!\text{ Mathematics but not Science}=n\left( E\bigcap M \right)-n\left( E\bigcap M\bigcap S \right)$
$\begin{align}
& =\text{Number of students studyingstuding English }\!\!\And\!\!\text{ Mathematics}-\text{Number of students studyingstuding all three subjects}\text{.} \\
& \text{=6}-4 \\
& =2 \\
\end{align}$
$\text{Number of studentsos students studying Mathematics }\!\!\And\!\!\text{ Science but not English}=n\left( M\bigcap S \right)-n\left( M\bigcap S\bigcap E \right)$ $\begin{align}
& =7-4 \\
& =3 \\
\end{align}$
\[\text{Number of students studying Only Mathematics}=n\left( M \right)-n\left( M\bigcap E \right)-n\left( M\bigcap E \right)+n\left( M\bigcap S\bigcap E \right)\] \[\begin{align}
& =12-\text{6}-7+4 \\
& =3 \\
\end{align}\]
\[\text{Number of students studying more than one subject}=n\left( M\bigcap S \right)+n\left( S\bigcap E \right)+n\left( E\bigcap M \right)-2\left( E\bigcap M\bigcap S \right)\]
$\begin{align}
& =6+7+4-2\times \left( 4 \right) \\
& =17-8=9 \\
\end{align}$
Note: We can plot the values of a, b, c, d, e, f, g & h orally. We start with placing the values of e by i.e. common region of all three subjects. After this we can find the value of e, d and f i.e. common region for two subjects then we calculate a, g, c the region for one subject and finally we can calculate h by subtracting from total$-\left( \text{a}+\text{b}+\text{c}+\text{d}+\text{e}+\text{f}+\text{g} \right)$ .
Formula used:
1.$n\left( AuBuC \right)=n\left( A \right)+n\left( B \right)+n\left( C \right)=n\left( A\bigcap B \right)-n\left( B\bigcap C \right)-n\left( A\bigcap C \right)+n\left( A\bigcap B\bigcap C \right)$
2.$\text{Number of students studying English }\!\!\And\!\!\text{ Maths but not science}=n\left( E\bigcap M \right)-n\left( E\bigcap M\bigcap S \right)$
3.$\text{Number}$ $\text{Math }\!\!\And\!\!\text{ Science but not English}=n\left( M\bigcap S \right)-n\left( E\bigcap M\bigcap S \right)$
4.$\text{No of students study only Mathematics}=n\left( E\bigcap M \right)-n\left( S\bigcap M \right)+n\left( E\bigcap M\bigcap B \right)$
5.$\text{More than one subject}=n\left( E\bigcap M \right)+n\left( E\bigcap S \right)-n\left( E\bigcap M\bigcap S \right)$
Complete step-by-step answer:
$\begin{align}
& \text{Total number of students}=100 \\
& \text{ Number of students }n\left( E \right)=15 \\
& \text{ }n\left( M \right)=12 \\
& \text{ }n\left( S \right)=8 \\
\end{align}$
$\begin{align}
& \text{ }E\text{ and }M\text{ }n\left( E\bigcap M \right)=6 \\
& \text{ }n\left( M\bigcap S \right)=7 \\
& \text{ }n\left( E\bigcap S \right)=4 \\
& \text{ }n\left( E\bigcap S\bigcap M \right)=4 \\
\end{align}$
\[\begin{align}
& n\left( E\bigcap S\bigcap M \right)=n\left( E \right)+n\left( S \right)+n\left( M \right)-n\left( E\bigcap S \right) \\
& \text{ }-n\left( S\bigcap M \right)-n\left( M\bigcap E \right)+n\left( M\bigcap E\bigcap S \right) \\
\end{align}\]
\[\begin{align}
& =15+12+8-4-7-6+4 \\
& \text{ }=22 \\
\end{align}\]
$\begin{align}
& \text{Number of students those who study either of the three subjects}=22 \\
& a+b+c+d+e+f+g=22 \\
& \text{Therefore number of students those who study none of the subject}=100-22 \\
& \text{ }=78 \\
& \text{ }=h \\
\end{align}$
$\text{Number of students study English }\!\!\And\!\!\text{ Mathematics but not Science}=n\left( E\bigcap M \right)-n\left( E\bigcap M\bigcap S \right)$
$\begin{align}
& =\text{Number of students studyingstuding English }\!\!\And\!\!\text{ Mathematics}-\text{Number of students studyingstuding all three subjects}\text{.} \\
& \text{=6}-4 \\
& =2 \\
\end{align}$
$\text{Number of studentsos students studying Mathematics }\!\!\And\!\!\text{ Science but not English}=n\left( M\bigcap S \right)-n\left( M\bigcap S\bigcap E \right)$ $\begin{align}
& =7-4 \\
& =3 \\
\end{align}$
\[\text{Number of students studying Only Mathematics}=n\left( M \right)-n\left( M\bigcap E \right)-n\left( M\bigcap E \right)+n\left( M\bigcap S\bigcap E \right)\] \[\begin{align}
& =12-\text{6}-7+4 \\
& =3 \\
\end{align}\]
\[\text{Number of students studying more than one subject}=n\left( M\bigcap S \right)+n\left( S\bigcap E \right)+n\left( E\bigcap M \right)-2\left( E\bigcap M\bigcap S \right)\]
$\begin{align}
& =6+7+4-2\times \left( 4 \right) \\
& =17-8=9 \\
\end{align}$
Note: We can plot the values of a, b, c, d, e, f, g & h orally. We start with placing the values of e by i.e. common region of all three subjects. After this we can find the value of e, d and f i.e. common region for two subjects then we calculate a, g, c the region for one subject and finally we can calculate h by subtracting from total$-\left( \text{a}+\text{b}+\text{c}+\text{d}+\text{e}+\text{f}+\text{g} \right)$ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

