
One side of the parallelogram has length 3 and another side has length 4. Let a and b denote the lengths of the diagonals of the parallelogram. Which of the following quantities can be determined from the given information?
${\text{(i) }}a + b$
${\text{(ii) }}{a^2} + {b^2}{\text{ }}$
${\text{(iii) }}{a^3} + {b^3}$
A) Only (i)
B) Only (ii)
C) Only (iii)
D) Only (i) and (ii)
Answer
571.8k+ views
Hint: Two vectors $\vec a$ and $\vec b$represented by the two adjacent sides of a parallelogram in magnitude and direction, then their sum $\vec a + \vec b$ is represented in magnitude and direction by the diagonal of the parallelogram through their common path. This is known as the parallelogram law of vector addition.
The dot product or scalar product of two vectors $\vec a{\text{ and }}\vec b$ is the multiplication of the magnitude of two vectors and cos of the angle between them.
$\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $,
$\vec a \cdot \vec a = {\left| {\vec a} \right|^2}$ [$\because \cos 0^\circ = 1$] …………………………...…… (1)
Complete step by step answer:
In parallelogram ABCD, AB || CD, AD || BC …… (from figure 2)
and vectors of parallelogram.
$\overrightarrow {AB} = \overrightarrow {DC} ,\overrightarrow {AD} = \overrightarrow {BC} $ …… (from figure 3)
$\overrightarrow {{\text{AC}}} {\text{ }} = {{ \vec a}},\overrightarrow {{\text{ BD}}} {\text{ }} = {{ \vec b}}$, ( $\because $ given) …… (2)
$\Rightarrow \overrightarrow {{\text{AB}}} {\text{ }} + {\text{ }}\overrightarrow {{\text{AD}}} {\text{ }} = {\text{ }}\overrightarrow {{\text{AC}}} $ ( $\because $ parallelogram law of vector addition)
Taking dot product on both sides
${\text{(}}\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{AD}}} {\text{)}} \cdot {\text{(}}\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{AD}}} {\text{) = }}\overrightarrow {{\text{AC}}} \cdot \overrightarrow {{\text{AC}}} $
${\left| {\overrightarrow {AC} } \right|^2} = {\left| {\overrightarrow {AB} } \right|^2} + {\left| {\overrightarrow {AD} } \right|^2} + 2\left( {\overrightarrow {AB} .\overrightarrow {AD} } \right)$ (from (1)) …… (3)
$\Rightarrow \overrightarrow {{\text{AB}}} {\text{ }} - {\text{ }}\overrightarrow {{\text{AD}}} {\text{ = }}\overrightarrow {{\text{BD}}} $ ( $\because $ parallelogram law of vector addition)
Taking dot product on both sides
$\Rightarrow {\text{(}}\overrightarrow {{\text{AB}}} - \overrightarrow {{\text{AD}}} {\text{)}} \cdot {\text{(}}\overrightarrow {{\text{AB}}} - \overrightarrow {{\text{AD}}} {\text{) = }}\overrightarrow {{\text{BD}}} \cdot \overrightarrow {{\text{BD}}} $
$\Rightarrow {\left| {\overrightarrow {BD} } \right|^2} = {\left| {\overrightarrow {AB} } \right|^2} + {\left| {\overrightarrow {AD} } \right|^2} - 2\left( {\overrightarrow {AB} .\overrightarrow {AD} } \right)$ …… (4)
Adding equations (2) and (3)
$\Rightarrow {\left| {\overrightarrow {AC} } \right|^2} + {\left| {\overrightarrow {BD} } \right|^2} = 2\left( {{{\left| {\overrightarrow {AB} } \right|}^2} + {{\left| {\overrightarrow {AD} } \right|}^2}} \right)$ …… (5)
Magnitudes: $\left| {\overrightarrow {AC} } \right| = a;{\text{ }}\left| {\overrightarrow {BD} } \right| = b;{\text{ }}\left| {\overrightarrow {AB} } \right| = 3;{\text{ }}\left| {\overrightarrow {AD} } \right| = 4;$ ( $\because $ given)
$\mathop {\text{a}}\nolimits^{\text{2}} {\text{ + }}\mathop {{\text{ b}}}\nolimits^{\text{2}} {\text{ = 2(}}\mathop {\text{3}}\nolimits^{\text{2}} {\text{ + }}\mathop {\text{4}}\nolimits^{\text{2}} {\text{)}}$
$ = 2(9 + 16)$
$ = 2(25)$
$ = 50$
$\therefore$ Option (B): only (ii) is correct. One can only find the value of $\mathop {\text{a}}\nolimits^{\text{2}} {\text{ + }}\mathop {{\text{b }}}\nolimits^{\text{2}} {\text{ = 50}}$.
Note:
One can remember the result derived in the above solution: The sum of squares of length of diagonals of a parallelogram is equal to the sum of squares of length of all the sides of the parallelogram. The result can help solve such problems.
The dot product or scalar product of two vectors $\vec a{\text{ and }}\vec b$ is the multiplication of the magnitude of two vectors and cos of the angle between them.
$\vec a \cdot \vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $,
$\vec a \cdot \vec a = {\left| {\vec a} \right|^2}$ [$\because \cos 0^\circ = 1$] …………………………...…… (1)
Complete step by step answer:
In parallelogram ABCD, AB || CD, AD || BC …… (from figure 2)
and vectors of parallelogram.
$\overrightarrow {AB} = \overrightarrow {DC} ,\overrightarrow {AD} = \overrightarrow {BC} $ …… (from figure 3)
$\overrightarrow {{\text{AC}}} {\text{ }} = {{ \vec a}},\overrightarrow {{\text{ BD}}} {\text{ }} = {{ \vec b}}$, ( $\because $ given) …… (2)
$\Rightarrow \overrightarrow {{\text{AB}}} {\text{ }} + {\text{ }}\overrightarrow {{\text{AD}}} {\text{ }} = {\text{ }}\overrightarrow {{\text{AC}}} $ ( $\because $ parallelogram law of vector addition)
Taking dot product on both sides
${\text{(}}\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{AD}}} {\text{)}} \cdot {\text{(}}\overrightarrow {{\text{AB}}} {\text{ + }}\overrightarrow {{\text{AD}}} {\text{) = }}\overrightarrow {{\text{AC}}} \cdot \overrightarrow {{\text{AC}}} $
${\left| {\overrightarrow {AC} } \right|^2} = {\left| {\overrightarrow {AB} } \right|^2} + {\left| {\overrightarrow {AD} } \right|^2} + 2\left( {\overrightarrow {AB} .\overrightarrow {AD} } \right)$ (from (1)) …… (3)
$\Rightarrow \overrightarrow {{\text{AB}}} {\text{ }} - {\text{ }}\overrightarrow {{\text{AD}}} {\text{ = }}\overrightarrow {{\text{BD}}} $ ( $\because $ parallelogram law of vector addition)
Taking dot product on both sides
$\Rightarrow {\text{(}}\overrightarrow {{\text{AB}}} - \overrightarrow {{\text{AD}}} {\text{)}} \cdot {\text{(}}\overrightarrow {{\text{AB}}} - \overrightarrow {{\text{AD}}} {\text{) = }}\overrightarrow {{\text{BD}}} \cdot \overrightarrow {{\text{BD}}} $
$\Rightarrow {\left| {\overrightarrow {BD} } \right|^2} = {\left| {\overrightarrow {AB} } \right|^2} + {\left| {\overrightarrow {AD} } \right|^2} - 2\left( {\overrightarrow {AB} .\overrightarrow {AD} } \right)$ …… (4)
Adding equations (2) and (3)
$\Rightarrow {\left| {\overrightarrow {AC} } \right|^2} + {\left| {\overrightarrow {BD} } \right|^2} = 2\left( {{{\left| {\overrightarrow {AB} } \right|}^2} + {{\left| {\overrightarrow {AD} } \right|}^2}} \right)$ …… (5)
Magnitudes: $\left| {\overrightarrow {AC} } \right| = a;{\text{ }}\left| {\overrightarrow {BD} } \right| = b;{\text{ }}\left| {\overrightarrow {AB} } \right| = 3;{\text{ }}\left| {\overrightarrow {AD} } \right| = 4;$ ( $\because $ given)
$\mathop {\text{a}}\nolimits^{\text{2}} {\text{ + }}\mathop {{\text{ b}}}\nolimits^{\text{2}} {\text{ = 2(}}\mathop {\text{3}}\nolimits^{\text{2}} {\text{ + }}\mathop {\text{4}}\nolimits^{\text{2}} {\text{)}}$
$ = 2(9 + 16)$
$ = 2(25)$
$ = 50$
$\therefore$ Option (B): only (ii) is correct. One can only find the value of $\mathop {\text{a}}\nolimits^{\text{2}} {\text{ + }}\mathop {{\text{b }}}\nolimits^{\text{2}} {\text{ = 50}}$.
Note:
One can remember the result derived in the above solution: The sum of squares of length of diagonals of a parallelogram is equal to the sum of squares of length of all the sides of the parallelogram. The result can help solve such problems.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

