Answer
Verified
382.5k+ views
Hint: In order to find one root for the equation $ \left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 4} \right) = 120 $ , check out the number of terms in the right-hand side and compare it with the other side. If the number of terms is not the same then split the splittable value to make the terms equal on both the sides, arrange them in ascending or descending order, then compare the equations, and get the results.
Complete step-by-step answer:
We are given the equation $ \left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 4} \right) = 120 $ .
Arranging the terms on the left side in ascending order, and we get:
$ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 120 $
Since, there are four terms on the left side and one term on the right side, we will split the left term that is $ 120 $ into parts.
As we know that $ 120 $ is the factorial of $ 5 $ . So, it can be written as $ 5! = 120 $ , and $ 5! $ can be splitted as $ 120 = 5! = 5 \times 4 \times 3 \times 2 \times 1 $ .
Substituting this value in the equation $ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 120 $ , we get:
$ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 5 \times 4 \times 3 \times 2 $ (Excluding $ 1 $ as anything multiplied to $ 1 $ , gives the same value).
Since, the left side is in increasing order and the right side is in decreasing order, so writing the right side also in increasing order and, we can write it as:
$ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 2 \times 3 \times 4 \times 5 $
By comparing each term of both the sides we can get all the roots, but since we want only one root.
So, taking one value:
$ \left( {x + 1} \right) = 2 $
Subtracting both the sides by $ 1 $ :
$
x + 1 - 1 = 2 - 1 \\
\Rightarrow x = 1 \;
$
Which is the one root obtained.
Therefore, one root of the equation $ \left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 4} \right) = 120 $ is $ 1 $ .
So, the correct answer is “1”.
Note: Factorial of a number is the product of all the numbers starting from $ 1 $ and the number taken.
It’s important to arrange the both side values in the same order to find the roots easily.
We can check our answer by substituting the result into the given equation.
Complete step-by-step answer:
We are given the equation $ \left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 4} \right) = 120 $ .
Arranging the terms on the left side in ascending order, and we get:
$ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 120 $
Since, there are four terms on the left side and one term on the right side, we will split the left term that is $ 120 $ into parts.
As we know that $ 120 $ is the factorial of $ 5 $ . So, it can be written as $ 5! = 120 $ , and $ 5! $ can be splitted as $ 120 = 5! = 5 \times 4 \times 3 \times 2 \times 1 $ .
Substituting this value in the equation $ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 120 $ , we get:
$ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 5 \times 4 \times 3 \times 2 $ (Excluding $ 1 $ as anything multiplied to $ 1 $ , gives the same value).
Since, the left side is in increasing order and the right side is in decreasing order, so writing the right side also in increasing order and, we can write it as:
$ \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) = 2 \times 3 \times 4 \times 5 $
By comparing each term of both the sides we can get all the roots, but since we want only one root.
So, taking one value:
$ \left( {x + 1} \right) = 2 $
Subtracting both the sides by $ 1 $ :
$
x + 1 - 1 = 2 - 1 \\
\Rightarrow x = 1 \;
$
Which is the one root obtained.
Therefore, one root of the equation $ \left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 2} \right)\left( {x + 4} \right) = 120 $ is $ 1 $ .
So, the correct answer is “1”.
Note: Factorial of a number is the product of all the numbers starting from $ 1 $ and the number taken.
It’s important to arrange the both side values in the same order to find the roots easily.
We can check our answer by substituting the result into the given equation.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE