Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

One mole of an ideal gas at standard temperature and pressure occupies 22.4L (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen? (Take the size of a hydrogen molecule to be about 1).
Why is the ratio so large?

seo-qna
Last updated date: 23rd Apr 2024
Total views: 400.5k
Views today: 8.00k
Answer
VerifiedVerified
400.5k+ views
Hint: Atomic volume of a molecule is given by the formula:
\[{V_a} = \dfrac{4}{3}\pi {R^3} \times N\]
Where,
Va is the atomic volume of the molecule
R is the radius of the molecule
N is the number of molecules

Intermolecular separations are present within molecules.

Complete step by step solution:
Atomic volume of a molecule is given by the formula:
\[{V_a} = \dfrac{4}{3}\pi {R^3} \times N\] Equation 1
Where,
Va is the atomic volume of the molecule
R is the radius of the molecule
N is the number of molecules

Now, it has been given in the question that the size of Hydrogen is 1. This clearly implies that the diameter of a Hydrogen molecule is 1.
Hence Radius of Hydrogen molecule (R) = Half the diameter
$ = > R = \dfrac{1}{2}$
According to Avogadro’s law, one mole of any substance contains $6.023 \times {10^{23}}$ molecules in it.
Hence the value of N will be:
$ = > N = 6.023 \times {10^{23}}$
Finally, we will insert the values of R and N in equation 1 in order to calculate the atomic volume of Hydrogen,
\[ = > {V_a} = \dfrac{4}{3}\pi \times {(\dfrac{1}{2})^3} \times (6.023 \times {10^{23}})\]
\[ = > {V_a} = 3.15 \times {10^{ - 7}}{m^3}\]
Unit is \[{m^3}\]as all the other quantities in the above equation are in their SI units.
Given in the question that Hydrogen gas occupies 22.4 liters. This is the molar volume of Hydrogen.
$ = > MolarVolume = 22.4liters$
We need to convert this into SI units.
$ = > MolarVolume = 22.4 \times {10^{ - 3}}{m^3}$
Now we need to find the ratio between Molar Volume and Va:
$ = > \dfrac{{MolarVolume}}{{{V_a}}} = \dfrac{{22.4 \times {{10}^3}}}{{3.15 \times {{10}^{ - 7}}}}$
$ = > \dfrac{{MolarVolume}}{{{V_a}}} \simeq 7 \times {10^4}$
This ratio is quite large because of intermolecular separations within Hydrogen gas.


Note:
In such questions, care must be taken that we perform all calculations in SI units. Also, there is a high chance of committing silly mistakes in the calculations (since this question was calculation-intensive).

Watch videos on
One mole of an ideal gas at standard temperature and pressure occupies 22.4L (molar volume). What is the ratio of molar volume to the atomic volume of a mole of hydrogen? (Take the size of a hydrogen molecule to be about 1).
Why is the ratio so large?

icon
NCERT EXERCISE 1.15 | NCERT Solution for Class 11 Physics Chapter 1 | Units and Measurement NCERT
Subscribe
iconShare
likes
147 Views
7 months ago
Recently Updated Pages