
On the superposition of two harmonic oscillations represented by ${{x}_{1}}=a\sin \left( \omega t+{{\phi }_{1}} \right)$ and ${{x}_{2}}=a\sin \left( \omega t+{{\phi }_{2}} \right)$, a resulting oscillation with the same time period and amplitude is obtained. The value of ${{\phi }_{1}}-{{\phi }_{2}}$ is
$A)\text{ }{{120}^{0}}$
$B)\text{ 9}{{0}^{0}}$
$C)\text{ 6}{{0}^{0}}$
$D)\text{ }{{15}^{0}}$
Answer
510.9k+ views
Hint: This problem can be solved by finding out the expression for the superimposed wave by adding the two given waves mathematically and using trigonometric identities and then solving simultaneously according to the given conditions for the time period and amplitude of the superimposed wave.
Complete answer:
Let us analyze the question.
The representation of one of the harmonic oscillations is ${{x}_{1}}=a\sin \left( \omega t+{{\phi }_{1}} \right)$.
The representation of the second harmonic oscillations is ${{x}_{2}}=a\sin \left( \omega t+{{\phi }_{2}} \right)$.
Let the superimposed harmonic oscillation be $x$.
Now,
$x={{x}_{1}}+{{x}_{2}}$
$\Rightarrow x=a\sin \left( \omega t+{{\phi }_{1}} \right)+a\sin \left( \omega t+{{\phi }_{2}} \right)$
$\Rightarrow x=a\left( \sin \left( \omega t+{{\phi }_{1}} \right)+\sin \left( \omega t+{{\phi }_{2}} \right) \right)$
$\Rightarrow x=a\left( 2\sin \left( \dfrac{\omega t+{{\phi }_{1}}+\omega t+{{\phi }_{2}}}{2} \right)\cos \left( \dfrac{\omega t+{{\phi }_{1}}-\left( \omega t+{{\phi }_{2}} \right)}{2} \right) \right)$ $\because \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
$\Rightarrow x=a\left( 2\sin \left( \dfrac{2\omega t+{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\cos \left( \dfrac{\omega t+{{\phi }_{1}}-\omega t-{{\phi }_{2}}}{2} \right) \right)$
$\Rightarrow x=a\left( 2\sin \left( \omega t+\dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right) \right)$
$\Rightarrow x=2a\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)\left( \sin \left( \omega t+\dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right) \right)$
Comparing this to the general expression for a harmonic oscillation
$x=A\sin \left( \omega t+\phi \right)$
Where $A$ is the amplitude, $\omega $ is the angular frequency and $\phi $ is the initial phase, we get
$A=2a\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$ --(1)
Also, according to the question, the amplitude of this superimposed wave is the same as that of the component oscillations.
$\Rightarrow A=a$ --(2)
Putting (2) in (1), we get
$a=2a\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$
$\Rightarrow 1=2\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$
$\Rightarrow \dfrac{1}{2}=\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$
$\Rightarrow \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2}={{\cos }^{-1}}\left( \dfrac{1}{2} \right)$
$\Rightarrow \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2}={{60}^{0}}$ $\left( \because {{\cos }^{-1}}\left( \dfrac{1}{2} \right)={{60}^{0}} \right)$
$\Rightarrow {{\phi }_{1}}-{{\phi }_{2}}=2\times {{60}^{0}}={{120}^{0}}$
Therefore, we have got the required value for ${{\phi }_{1}}-{{\phi }_{2}}$.
So, the correct answer is “Option A”.
Note:
Students must also note that $\Rightarrow \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2}=-{{60}^{0}},{{\phi }_{1}}-{{\phi }_{2}}=-{{120}^{0}}={{360}^{0}}-{{120}^{0}}={{240}^{0}}$
Is also a valid answer. However, since this answer is not given in the options, we do not consider it. Students must also have understood that when two waves get superimposed, the amplitude of the resultant wave can be written in terms of the amplitude of the component waves and the difference in the phase angles of the two component waves.
Complete answer:
Let us analyze the question.
The representation of one of the harmonic oscillations is ${{x}_{1}}=a\sin \left( \omega t+{{\phi }_{1}} \right)$.
The representation of the second harmonic oscillations is ${{x}_{2}}=a\sin \left( \omega t+{{\phi }_{2}} \right)$.
Let the superimposed harmonic oscillation be $x$.
Now,
$x={{x}_{1}}+{{x}_{2}}$
$\Rightarrow x=a\sin \left( \omega t+{{\phi }_{1}} \right)+a\sin \left( \omega t+{{\phi }_{2}} \right)$
$\Rightarrow x=a\left( \sin \left( \omega t+{{\phi }_{1}} \right)+\sin \left( \omega t+{{\phi }_{2}} \right) \right)$
$\Rightarrow x=a\left( 2\sin \left( \dfrac{\omega t+{{\phi }_{1}}+\omega t+{{\phi }_{2}}}{2} \right)\cos \left( \dfrac{\omega t+{{\phi }_{1}}-\left( \omega t+{{\phi }_{2}} \right)}{2} \right) \right)$ $\because \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$
$\Rightarrow x=a\left( 2\sin \left( \dfrac{2\omega t+{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\cos \left( \dfrac{\omega t+{{\phi }_{1}}-\omega t-{{\phi }_{2}}}{2} \right) \right)$
$\Rightarrow x=a\left( 2\sin \left( \omega t+\dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right)\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right) \right)$
$\Rightarrow x=2a\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)\left( \sin \left( \omega t+\dfrac{{{\phi }_{1}}+{{\phi }_{2}}}{2} \right) \right)$
Comparing this to the general expression for a harmonic oscillation
$x=A\sin \left( \omega t+\phi \right)$
Where $A$ is the amplitude, $\omega $ is the angular frequency and $\phi $ is the initial phase, we get
$A=2a\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$ --(1)
Also, according to the question, the amplitude of this superimposed wave is the same as that of the component oscillations.
$\Rightarrow A=a$ --(2)
Putting (2) in (1), we get
$a=2a\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$
$\Rightarrow 1=2\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$
$\Rightarrow \dfrac{1}{2}=\cos \left( \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2} \right)$
$\Rightarrow \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2}={{\cos }^{-1}}\left( \dfrac{1}{2} \right)$
$\Rightarrow \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2}={{60}^{0}}$ $\left( \because {{\cos }^{-1}}\left( \dfrac{1}{2} \right)={{60}^{0}} \right)$
$\Rightarrow {{\phi }_{1}}-{{\phi }_{2}}=2\times {{60}^{0}}={{120}^{0}}$
Therefore, we have got the required value for ${{\phi }_{1}}-{{\phi }_{2}}$.
So, the correct answer is “Option A”.
Note:
Students must also note that $\Rightarrow \dfrac{{{\phi }_{1}}-{{\phi }_{2}}}{2}=-{{60}^{0}},{{\phi }_{1}}-{{\phi }_{2}}=-{{120}^{0}}={{360}^{0}}-{{120}^{0}}={{240}^{0}}$
Is also a valid answer. However, since this answer is not given in the options, we do not consider it. Students must also have understood that when two waves get superimposed, the amplitude of the resultant wave can be written in terms of the amplitude of the component waves and the difference in the phase angles of the two component waves.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

The non protein part of an enzyme is a A Prosthetic class 11 biology CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

What is a zygomorphic flower Give example class 11 biology CBSE

The deoxygenated blood from the hind limbs of the frog class 11 biology CBSE

What is the function of copulatory pads in the forelimbs class 11 biology CBSE
