On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\]. The positive integer n for which
\[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \] is
(A) \[100\]
(B) \[198\]
(C) \[200\]
(D) \[202\]
Answer
Verified
470.1k+ views
Hint: In this question, we have to evaluate the integral in a specific range.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE