Answer
Verified
437.7k+ views
Hint: In this question, we have to evaluate the integral in a specific range.
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
The box function, more commonly known as the greatest integer function, returns the integer just below the value entered, denoted by \[\left[ x \right]\].
If the number is an integer use that integer.
If the number is not an integer use the smaller integer.
Complete step-by-step answer:
It is given that, On the real line \[\mathbb{R}\], we define two functions f and g as follows :
\[f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
\[g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
Where \[\left[ x \right]\] denotes the largest integer not exceeding \[x\].
We need to find out the positive integer $n$ for which
\[ \Rightarrow \int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \].
Let us denote,
\[ \Rightarrow f\left( x \right) = x\& g\left( x \right) = g\].
Also, \[m\left( x \right)\]=fractional part of \[x\].
\[ \Rightarrow m\left( x \right) = x - \left[ x \right]\].
Let us consider the term,
\[ \Rightarrow f\left( x \right) = \min \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\].
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow f\left( x \right) = \min \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Now for \[g\left( x \right)\],
\[ \Rightarrow g\left( x \right) = \max \left\{ {x - \left[ x \right],1 - x + \left[ x \right]} \right\}\]
By using \[m\left( x \right) = x - \left[ x \right]\] we get,
\[ \Rightarrow g\left( x \right) = \max \left\{ {m\left( x \right),1 - m\left( x \right)} \right\}\]
Where \[m\left( x \right)\] is always \[0 \leqslant m\left( x \right) < 1\]
For, \[0 < m\left( x \right) < 0.5\]
\[ \Rightarrow f = m\left( x \right),{\text{ }}g = 1 - m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = 1 - m\left( x \right) - m\left( x \right) = 1 - 2m\left( x \right)\]
\[ \Rightarrow g - f = 1 - 2m\left( x \right)........(1)\]
Similarly for, \[0.5 < m\left( x \right) < 1\]
\[ \Rightarrow f = 1 - m\left( x \right),{\text{ }}g = m\left( x \right)\]
Thus,
\[ \Rightarrow g - f = m\left( x \right) - \left\{ {1 - m\left( x \right)} \right\}\]
Simplifying we get,
\[ \Rightarrow m\left( x \right) - 1 + m\left( x \right) = 2m\left( x \right) - 1\]
\[ \Rightarrow g - f = 2m\left( x \right) - 1.........(2)\]
Given that, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Since the above function is periodic,
That is, \[P(k) = P(k + 1)\] where, \[P(k) = \int\limits_k^{k + 1} {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} \]
So we get,
\[ \Rightarrow \int\limits_0^1 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_1^2 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} = \int\limits_2^3 {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx = ... = \int\limits_{n - 1}^n {\left\{ {g\left( x \right) - f\left( x \right)} \right\}dx} } \]
Therefore we get, \[\int\limits_0^n {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
\[ \Rightarrow n\int\limits_0^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx = 100} \]
Splitting the limit,
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {g\left( x \right) - f\left( x \right)} \right)dx + n\int\limits_{0.5}^1 {\left( {g\left( x \right) - f\left( x \right)} \right)dx} = 100} \]
By substituting the equations (1) and (2) we get,
\[ \Rightarrow n\int\limits_0^{0.5} {\left\{ {1 - 2m\left( x \right)} \right\}dx + n\int\limits_{0.5}^1 {\left\{ {2m\left( x \right) - 1} \right\}dx} = 100} \]
\[\left[ x \right]\]is the greatest integer function, returning the integer just below the value entered.
\[ \Rightarrow n\int\limits_0^{0.5} {\left( {1 - 2x} \right)dx} + n\int\limits_{0.5}^1 {\left( {2x - 1} \right)dx} = 100\]
Integrating the terms we get,
\[ \Rightarrow n\left[ x \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} - 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
{0.5} \\
0
\end{array} + 2n\left[ {\dfrac{{{x^2}}}{2}} \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} - n\left[ x \right]\begin{array}{*{20}{c}}
1 \\
{0.5}
\end{array} = 100\]
Applying the limit values we get,
\[ \Rightarrow n\left( {0.5 - 0} \right) - 0.25n + n\left( {1 - 0.25} \right) - n\left( {1 - 0.5} \right) = 100\]
Simplifying we get,
\[ \Rightarrow 0.5n - 0.25n + 0.75n - 0.5n = 100\]
Add and subtract the terms to simplify,
\[ \Rightarrow 0.5n = 100\]
Solve for \[n\] we get,
\[ \Rightarrow n = 200\]
Hence, \[n = 200\]
$\therefore $(C) is the correct option.
Note: A periodic function is a function that repeats its values at regular intervals, for example, the trigonometric functions, which repeat at intervals of 2π radians. Periodic functions are used throughout science to describe oscillations, waves, and other phenomena that exhibit periodicity. A function \[f\left( x \right)\] is said to be periodic with period p if \[f\left( x \right) = f\left( {x + np} \right)\], for \[n = 1,2,3,.....\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE