
On dividing \[{{x}^{3}}-3{{x}^{2}}+x+2\] by a polynomial \[g\left( x \right)\], the quotient and remainder were
\[x-2\] and \[4-2x\] respectively, then \[g\left( x \right)\] is
(a) \[{{x}^{2}}+x+1\]
(b) \[{{x}^{2}}+x-1\]
(c) \[{{x}^{2}}-x-1\]
(d) \[{{x}^{2}}-x+1\]
Answer
579.6k+ views
Hint: For solving this problem first we use general definition of division that is \[\text{dividend = divisor}\times \text{quotient + remainder}\]. Here, we are given that the remainder as a linear function so the divisor will be a quadratic function. We assume \[g\left( x \right)\] as general function of quadratic that is \[g\left( x \right)=a{{x}^{2}}+bx+c\] and then by taking any three values of \['x'\] we can find values of \[a,b,c\] to get \[g\left( x \right)\].
Complete step-by-step solution
Let us assume that given function as
\[f\left( x \right)={{x}^{3}}-3{{x}^{2}}+x+2\]
Let us assume that quotient and remainder as
\[\begin{align}
& q\left( x \right)=x-2 \\
& r\left( x \right)=4-2x \\
\end{align}\]
Here, since the remainder is a linear function then \[g\left( x \right)\] is quadratic.
Let us assume that
\[g\left( x \right)=a{{x}^{2}}+bx+c\].
Now by using definition of division we will get
\[\Rightarrow f\left( x \right)=g\left( x \right)q\left( x \right)+r\left( x \right)\]
By substituting the functions in above equation we will get
\[\begin{align}
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2=\left( a{{x}^{2}}+bx+c \right)\left( x-2 \right)+4-2x \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2-\left( 4-2x \right)=\left( a{{x}^{2}}+bx+c \right)\left( x-2 \right) \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+3x-2=\left( a{{x}^{2}}+bx+c \right)\left( x-2 \right)........equation(i) \\
\end{align}\]
Now for finding the values of \[a,b,c\] let us assume \[x=0,1,3\]
By substituting \[x=0\] in equation (i) we get
\[\begin{align}
& \Rightarrow -2=\left( c \right)\left( -2 \right) \\
& \Rightarrow c=1 \\
\end{align}\]
Now by substituting \[x=1\] in equation (i) we get
\[\begin{align}
& \Rightarrow \left( 1-3+3-2 \right)=\left( a+b+c \right)\left( 1-2 \right) \\
& \Rightarrow \left( a+b+1 \right)\left( -1 \right)=-1 \\
& \Rightarrow a+b=0........equation(ii) \\
\end{align}\]
Bow by substituting \[x=3\] in equation (i) we get
\[\begin{align}
& \Rightarrow 27-27+9-2=\left( 9a+3b+1 \right)\left( 3-2 \right) \\
& \Rightarrow 9a+3b+1=7 \\
& \Rightarrow 9a+3b=6 \\
& \Rightarrow 3a+b=2........equation(iii) \\
\end{align}\]
Now, by subtracting equation (ii) from equation (iii) we get
\[\begin{align}
& \Rightarrow \left( 3a+b \right)-\left( a+b \right)=2-0 \\
& \Rightarrow 2a=2 \\
& \Rightarrow a=1 \\
\end{align}\]
Let us substitute value of \[a\] in equation (ii) we get
\[\begin{align}
& \Rightarrow 1+b=0 \\
& \Rightarrow b=-1 \\
\end{align}\]
Now we got all the values of \[a,b,c\].
Let us substitute the values of \[a,b,c\] in \[g\left( x \right)=a{{x}^{2}}+bx+c\] to get \[g\left( x \right)\]
\[\Rightarrow g\left( x \right)={{x}^{2}}-x+1\]
Therefore, option (d) is the correct answer.
Note: This question can be solved in another method.
Let us assume that given function as
\[f\left( x \right)={{x}^{3}}-3{{x}^{2}}+x+2\]
Let us assume that quotient and remainder as
\[\begin{align}
& q\left( x \right)=x-2 \\
& r\left( x \right)=4-2x \\
\end{align}\]
Here, since the remainder is a linear function then \[g\left( x \right)\] is quadratic.
Now by using definition of division we will get
\[\Rightarrow f\left( x \right)=g\left( x \right)q\left( x \right)+r\left( x \right)\]
By substituting the functions in above equation we will get
\[\begin{align}
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2=g\left( x \right)\left( x-2 \right)+4-2x \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2-\left( 4-2x \right)=g\left( x \right)\left( x-2 \right) \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+3x-2=g\left( x \right)\left( x-2 \right) \\
& \Rightarrow g\left( x \right)=\dfrac{{{x}^{3}}-3{{x}^{2}}+3x-2}{x-2} \\
\end{align}\]
By evaluating the above division we will get
\[\Rightarrow g\left( x \right)={{x}^{2}}-x+1\]
So, option (d) is the correct answer.
Complete step-by-step solution
Let us assume that given function as
\[f\left( x \right)={{x}^{3}}-3{{x}^{2}}+x+2\]
Let us assume that quotient and remainder as
\[\begin{align}
& q\left( x \right)=x-2 \\
& r\left( x \right)=4-2x \\
\end{align}\]
Here, since the remainder is a linear function then \[g\left( x \right)\] is quadratic.
Let us assume that
\[g\left( x \right)=a{{x}^{2}}+bx+c\].
Now by using definition of division we will get
\[\Rightarrow f\left( x \right)=g\left( x \right)q\left( x \right)+r\left( x \right)\]
By substituting the functions in above equation we will get
\[\begin{align}
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2=\left( a{{x}^{2}}+bx+c \right)\left( x-2 \right)+4-2x \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2-\left( 4-2x \right)=\left( a{{x}^{2}}+bx+c \right)\left( x-2 \right) \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+3x-2=\left( a{{x}^{2}}+bx+c \right)\left( x-2 \right)........equation(i) \\
\end{align}\]
Now for finding the values of \[a,b,c\] let us assume \[x=0,1,3\]
By substituting \[x=0\] in equation (i) we get
\[\begin{align}
& \Rightarrow -2=\left( c \right)\left( -2 \right) \\
& \Rightarrow c=1 \\
\end{align}\]
Now by substituting \[x=1\] in equation (i) we get
\[\begin{align}
& \Rightarrow \left( 1-3+3-2 \right)=\left( a+b+c \right)\left( 1-2 \right) \\
& \Rightarrow \left( a+b+1 \right)\left( -1 \right)=-1 \\
& \Rightarrow a+b=0........equation(ii) \\
\end{align}\]
Bow by substituting \[x=3\] in equation (i) we get
\[\begin{align}
& \Rightarrow 27-27+9-2=\left( 9a+3b+1 \right)\left( 3-2 \right) \\
& \Rightarrow 9a+3b+1=7 \\
& \Rightarrow 9a+3b=6 \\
& \Rightarrow 3a+b=2........equation(iii) \\
\end{align}\]
Now, by subtracting equation (ii) from equation (iii) we get
\[\begin{align}
& \Rightarrow \left( 3a+b \right)-\left( a+b \right)=2-0 \\
& \Rightarrow 2a=2 \\
& \Rightarrow a=1 \\
\end{align}\]
Let us substitute value of \[a\] in equation (ii) we get
\[\begin{align}
& \Rightarrow 1+b=0 \\
& \Rightarrow b=-1 \\
\end{align}\]
Now we got all the values of \[a,b,c\].
Let us substitute the values of \[a,b,c\] in \[g\left( x \right)=a{{x}^{2}}+bx+c\] to get \[g\left( x \right)\]
\[\Rightarrow g\left( x \right)={{x}^{2}}-x+1\]
Therefore, option (d) is the correct answer.
Note: This question can be solved in another method.
Let us assume that given function as
\[f\left( x \right)={{x}^{3}}-3{{x}^{2}}+x+2\]
Let us assume that quotient and remainder as
\[\begin{align}
& q\left( x \right)=x-2 \\
& r\left( x \right)=4-2x \\
\end{align}\]
Here, since the remainder is a linear function then \[g\left( x \right)\] is quadratic.
Now by using definition of division we will get
\[\Rightarrow f\left( x \right)=g\left( x \right)q\left( x \right)+r\left( x \right)\]
By substituting the functions in above equation we will get
\[\begin{align}
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2=g\left( x \right)\left( x-2 \right)+4-2x \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+x+2-\left( 4-2x \right)=g\left( x \right)\left( x-2 \right) \\
& \Rightarrow {{x}^{3}}-3{{x}^{2}}+3x-2=g\left( x \right)\left( x-2 \right) \\
& \Rightarrow g\left( x \right)=\dfrac{{{x}^{3}}-3{{x}^{2}}+3x-2}{x-2} \\
\end{align}\]
By evaluating the above division we will get
\[\Rightarrow g\left( x \right)={{x}^{2}}-x+1\]
So, option (d) is the correct answer.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

