
On a litre of water to compress it by $0.10\% $ how much should the pressure be changed? (Bulk Modulus of water, ( $B = 2.2 \times {10^9}N{m^{ - 2}}$ )
Answer
570.3k+ views
Hint: Here Basically we are going to the formula of Bulk modulus. Bulk modulus is defined as, the measure of the ability of a substance to hold the capability of changes in volume when under pressure on all sides. It is equal to the applied pressure divided by the relative deformation. Sometimes referred to as incompressibility also.
Formula Used:
$B = \left( {\dfrac{P}{{(\dfrac{{\Delta V}}{V})}}} \right)$ Where P is the pressure and V is the volume.
Complete step by step answer:
According to the question given, we have to find the pressure on the given volume with the use of the concept of Bulk Modulus.
Volume of water given is $1L$
Let the pressure be P
It is mention that with the application of pressure P, the volume changes by $0.10\% $ which is equal to ${10^{ - 3}}$
As $\Delta V$ and $V$ has same units so $\dfrac{{\Delta V}}{V}$ is dimensionless
Coming back to the calculations,
Formula of Bulk Modulus is $B = \left( {\dfrac{P}{{(\dfrac{{\Delta V}}{V})}}} \right)$
With small modifications,
$P = B \times \dfrac{{\Delta V}}{V}$
Bulk Modulus of Water is fixed equals to $2.2 \times {10^9}N{m^{ - 2}}$
So, putting the value of Bulk Modulus and fractional change in volume
$P = 2.2 \times {10^9} \times {10^{ - 3}} = 2.2 \times {10^6}$
Hence, the correct solution is $2.2 \times {10^6}N{m^{ - 2}}$
Note: Higher is the bulk modulus of a substance smaller is the volumetric strain it goes for the same pressure, which means higher is the bulk modulus the more difficult it is to change the shape of the material/component.
Formula Used:
$B = \left( {\dfrac{P}{{(\dfrac{{\Delta V}}{V})}}} \right)$ Where P is the pressure and V is the volume.
Complete step by step answer:
According to the question given, we have to find the pressure on the given volume with the use of the concept of Bulk Modulus.
Volume of water given is $1L$
Let the pressure be P
It is mention that with the application of pressure P, the volume changes by $0.10\% $ which is equal to ${10^{ - 3}}$
As $\Delta V$ and $V$ has same units so $\dfrac{{\Delta V}}{V}$ is dimensionless
Coming back to the calculations,
Formula of Bulk Modulus is $B = \left( {\dfrac{P}{{(\dfrac{{\Delta V}}{V})}}} \right)$
With small modifications,
$P = B \times \dfrac{{\Delta V}}{V}$
Bulk Modulus of Water is fixed equals to $2.2 \times {10^9}N{m^{ - 2}}$
So, putting the value of Bulk Modulus and fractional change in volume
$P = 2.2 \times {10^9} \times {10^{ - 3}} = 2.2 \times {10^6}$
Hence, the correct solution is $2.2 \times {10^6}N{m^{ - 2}}$
Note: Higher is the bulk modulus of a substance smaller is the volumetric strain it goes for the same pressure, which means higher is the bulk modulus the more difficult it is to change the shape of the material/component.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

