Answer
Verified
448.5k+ views
Hint: We will solve this question by option verification method and use the concept that the sum of the internal angles of a triangle is 108°. We will find the angles given in the figure. With the help of the given angles, we will find one of the angles of triangle BCD. As soon as we find one angle of triangle BCD, we will see from the options which of the given options satisfy the sum of the internal angles of a triangle concept.
Complete step-by-step answer:
From the given figure, we make the following observations:
$ \angle $ BAD = 70°……(1)
$ \angle $ ABD = 56°……(2)
$ \angle $ ADC = 72°……(3)
We also make note that points ABD form a triangle. Similarly, BCD also make a triangle.
Now, $ \angle $ ADC can also be written as the sum of $ \angle $ ADB and $ \angle $ BDC.
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC……(4)
We also know that the sum of the internal angles of a triangle is 180°.
So, in triangle ABD, $ \angle $ ABD + $ \angle $ ADB + $ \angle $ BAD = 180°
From (1) and (2), $ \angle $ BAD = 70° and $ \angle $ ABD = 56°.
$ \Rightarrow $ 56° + $ \angle $ ADB + 70° = 180°
$ \Rightarrow $ $ \angle $ ADB = 54°
From (4) and (3), we know that $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC and $ \angle $ ADC = 72°
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC
$ \Rightarrow $ 72° = 54° + $ \angle $ BDC
$ \Rightarrow $ $ \angle $ BDC = 18°
Thus, we can rule out option (d).
Now, in triangle BDC, $ \angle $ BDC + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ 18° + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ $ \angle $ BCD + $ \angle $ CBD = 162°
From the options, we can see that option (a) satisfies this condition as in option (a), $ \angle $ BCD = 110°; $ \angle $ CBD = 52°, so 110° + 52° = 162°.
So, the correct answer is “Option A”.
Note: This is one method to use the concepts of sum of the internal angles of a triangle. Another principal is that the sum of the internal angles of a quadrilateral inscribed in a circle is 360°. In the figure, ABCD forms a quadrilateral. Even then, we have to use option verification as there will be two unknowns.
Complete step-by-step answer:
From the given figure, we make the following observations:
$ \angle $ BAD = 70°……(1)
$ \angle $ ABD = 56°……(2)
$ \angle $ ADC = 72°……(3)
We also make note that points ABD form a triangle. Similarly, BCD also make a triangle.
Now, $ \angle $ ADC can also be written as the sum of $ \angle $ ADB and $ \angle $ BDC.
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC……(4)
We also know that the sum of the internal angles of a triangle is 180°.
So, in triangle ABD, $ \angle $ ABD + $ \angle $ ADB + $ \angle $ BAD = 180°
From (1) and (2), $ \angle $ BAD = 70° and $ \angle $ ABD = 56°.
$ \Rightarrow $ 56° + $ \angle $ ADB + 70° = 180°
$ \Rightarrow $ $ \angle $ ADB = 54°
From (4) and (3), we know that $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC and $ \angle $ ADC = 72°
$ \Rightarrow $ $ \angle $ ADC = $ \angle $ ADB + $ \angle $ BDC
$ \Rightarrow $ 72° = 54° + $ \angle $ BDC
$ \Rightarrow $ $ \angle $ BDC = 18°
Thus, we can rule out option (d).
Now, in triangle BDC, $ \angle $ BDC + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ 18° + $ \angle $ BCD + $ \angle $ CBD = 180°
$ \Rightarrow $ $ \angle $ BCD + $ \angle $ CBD = 162°
From the options, we can see that option (a) satisfies this condition as in option (a), $ \angle $ BCD = 110°; $ \angle $ CBD = 52°, so 110° + 52° = 162°.
So, the correct answer is “Option A”.
Note: This is one method to use the concepts of sum of the internal angles of a triangle. Another principal is that the sum of the internal angles of a quadrilateral inscribed in a circle is 360°. In the figure, ABCD forms a quadrilateral. Even then, we have to use option verification as there will be two unknowns.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell