
How many numbers are there between 100 and 1000 such that every digit is either 2 or 9?
Answer
592.8k+ views
Hint: It is given in the question that we have to only look at 3 digit numbers because between 100 and 1000 there are only 3 digit numbers. Now we will use the fact that numbers should have only 2 and 9 as their digits, so we will find all the possible arrangements that can be done using these conditions and that will be the final answer.
Complete step-by-step answer:
Let’s start the solution,
Case 1: When we have three 2’s
Then the only possible number is 222.
Hence, one number in this case.
Case 2: When we have two 2’s and one 9
Now we will use the formula for arrangement of number like ‘aab’: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
The number of possible ways in which we can arrange this is: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
Hence, 3 numbers in this case.
Case 3: When we have one 2 and two 9’s
Now we will use the formula for arrangement of number like ‘aab’: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
The number of possible ways in which we can arrange this is: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
Hence, 3 numbers in this case.
Case 4: When we have three 9’s
Then the only possible number is 999.
Hence, one number in this case.
Hence, the total numbers will be 1 + 3 + 3 + 1 = 8.
Note: From the language of the question one should be able to deduce that we only have to look at 3 digits numbers only. And one can also try to write all the possible numbers that only contain 2 and 9, and then we just have to add all the total possible numbers to get the answer.
Complete step-by-step answer:
Let’s start the solution,
Case 1: When we have three 2’s
Then the only possible number is 222.
Hence, one number in this case.
Case 2: When we have two 2’s and one 9
Now we will use the formula for arrangement of number like ‘aab’: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
The number of possible ways in which we can arrange this is: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
Hence, 3 numbers in this case.
Case 3: When we have one 2 and two 9’s
Now we will use the formula for arrangement of number like ‘aab’: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
The number of possible ways in which we can arrange this is: $\dfrac{3!}{2!}=\dfrac{3\times 2}{2}=3$
Hence, 3 numbers in this case.
Case 4: When we have three 9’s
Then the only possible number is 999.
Hence, one number in this case.
Hence, the total numbers will be 1 + 3 + 3 + 1 = 8.
Note: From the language of the question one should be able to deduce that we only have to look at 3 digits numbers only. And one can also try to write all the possible numbers that only contain 2 and 9, and then we just have to add all the total possible numbers to get the answer.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

