
Number of value(s) of $ x $ which satisfy the equation ${\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x$ is
Answer
581.4k+ views
Hint: Apply inverse trigonometric rules and also use basic concepts of trigonometry to simplify the equation so that you can compute all the values that satisfy the equation.
Complete step-by-step answer:
In this question the equation is given as,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
We have to find the number of values which satisfy the given equation.
Therefore, $ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
On transforming the value $ {\tan ^{ - 1}}x $ from left hand side to right hand side we get,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x $
Now applying the formula of $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) $ on the both side in the above equation we get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right) $
On simplify the above equation we get,
$ {\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right) $
On calculating the equation by applying the inverse trigonometric rules we get,
$ \dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}} $
On cross multiplying the above equation we get,
$ -1 + 4{x^2} = 3{x^2} $
On simplifying the above equation we get, $ x = \pm 1 $
Hence there are two values of $ 'x' $ which satisfies the equation is $ \pm 1 $ .
Note: In this type of question, you should make use of inverse trigonometric formula such as, $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} $ , Also use $ \tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta $
Complete step-by-step answer:
In this question the equation is given as,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
We have to find the number of values which satisfy the given equation.
Therefore, $ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
On transforming the value $ {\tan ^{ - 1}}x $ from left hand side to right hand side we get,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x $
Now applying the formula of $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) $ on the both side in the above equation we get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right) $
On simplify the above equation we get,
$ {\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right) $
On calculating the equation by applying the inverse trigonometric rules we get,
$ \dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}} $
On cross multiplying the above equation we get,
$ -1 + 4{x^2} = 3{x^2} $
On simplifying the above equation we get, $ x = \pm 1 $
Hence there are two values of $ 'x' $ which satisfies the equation is $ \pm 1 $ .
Note: In this type of question, you should make use of inverse trigonometric formula such as, $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} $ , Also use $ \tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta $
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

