
Number of value(s) of $ x $ which satisfy the equation ${\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x$ is
Answer
567.3k+ views
Hint: Apply inverse trigonometric rules and also use basic concepts of trigonometry to simplify the equation so that you can compute all the values that satisfy the equation.
Complete step-by-step answer:
In this question the equation is given as,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
We have to find the number of values which satisfy the given equation.
Therefore, $ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
On transforming the value $ {\tan ^{ - 1}}x $ from left hand side to right hand side we get,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x $
Now applying the formula of $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) $ on the both side in the above equation we get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right) $
On simplify the above equation we get,
$ {\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right) $
On calculating the equation by applying the inverse trigonometric rules we get,
$ \dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}} $
On cross multiplying the above equation we get,
$ -1 + 4{x^2} = 3{x^2} $
On simplifying the above equation we get, $ x = \pm 1 $
Hence there are two values of $ 'x' $ which satisfies the equation is $ \pm 1 $ .
Note: In this type of question, you should make use of inverse trigonometric formula such as, $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} $ , Also use $ \tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta $
Complete step-by-step answer:
In this question the equation is given as,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
We have to find the number of values which satisfy the given equation.
Therefore, $ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
On transforming the value $ {\tan ^{ - 1}}x $ from left hand side to right hand side we get,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x $
Now applying the formula of $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) $ on the both side in the above equation we get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right) $
On simplify the above equation we get,
$ {\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right) $
On calculating the equation by applying the inverse trigonometric rules we get,
$ \dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}} $
On cross multiplying the above equation we get,
$ -1 + 4{x^2} = 3{x^2} $
On simplifying the above equation we get, $ x = \pm 1 $
Hence there are two values of $ 'x' $ which satisfies the equation is $ \pm 1 $ .
Note: In this type of question, you should make use of inverse trigonometric formula such as, $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} $ , Also use $ \tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta $
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

