
Number of value(s) of $ x $ which satisfy the equation ${\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x$ is
Answer
486.6k+ views
Hint: Apply inverse trigonometric rules and also use basic concepts of trigonometry to simplify the equation so that you can compute all the values that satisfy the equation.
Complete step-by-step answer:
In this question the equation is given as,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
We have to find the number of values which satisfy the given equation.
Therefore, $ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
On transforming the value $ {\tan ^{ - 1}}x $ from left hand side to right hand side we get,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x $
Now applying the formula of $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) $ on the both side in the above equation we get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right) $
On simplify the above equation we get,
$ {\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right) $
On calculating the equation by applying the inverse trigonometric rules we get,
$ \dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}} $
On cross multiplying the above equation we get,
$ -1 + 4{x^2} = 3{x^2} $
On simplifying the above equation we get, $ x = \pm 1 $
Hence there are two values of $ 'x' $ which satisfies the equation is $ \pm 1 $ .
Note: In this type of question, you should make use of inverse trigonometric formula such as, $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} $ , Also use $ \tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta $
Complete step-by-step answer:
In this question the equation is given as,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
We have to find the number of values which satisfy the given equation.
Therefore, $ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x $
On transforming the value $ {\tan ^{ - 1}}x $ from left hand side to right hand side we get,
$ {\tan ^{ - 1}}\left( {2x - 1} \right) + {\tan ^{ - 1}}\left( {2x + 1} \right) = {\tan ^{ - 1}}4x - {\tan ^{ - 1}}x $
Now applying the formula of $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left( {\dfrac{{x \pm y}}{{1 \pm xy}}} \right) $ on the both side in the above equation we get,
$ \Rightarrow {\tan ^{ - 1}}\left( {\dfrac{{2x - 1 + 2x + 1}}{{1 \pm (2x - 1)(2x + 1)}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{4x - x}}{{1 + 4x \times x}}} \right) $
On simplify the above equation we get,
$ {\tan ^{ - 1}}\left( {\dfrac{{4x}}{{4{x^2}}}} \right) = {\tan ^{ - 1}}\left( {\dfrac{{3x}}{{-1 + 4{x^2}}}} \right) $
On calculating the equation by applying the inverse trigonometric rules we get,
$ \dfrac{1}{x} = \dfrac{{3x}}{{-1 + 4{x^2}}} $
On cross multiplying the above equation we get,
$ -1 + 4{x^2} = 3{x^2} $
On simplifying the above equation we get, $ x = \pm 1 $
Hence there are two values of $ 'x' $ which satisfies the equation is $ \pm 1 $ .
Note: In this type of question, you should make use of inverse trigonometric formula such as, $ {\tan ^{ - 1}}x \pm {\tan ^{ - 1}}y = \dfrac{{x \pm y}}{{1 \pm y}} $ , Also use $ \tan \left[ {{{\tan }^{ - 1}}\theta } \right] = \theta $
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

Raindrops are spherical because of A Gravitational class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE
