
Number of particles is given by $n=-D\dfrac{{{n}_{2}}-{{n}_{1}}}{{{x}_{2}}-{{x}_{1}}}$ crossing a unit area perpendicular to X-axis in unit time, where ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume for value of x meant to ${{x}_{2}}$ and ${{x}_{1}}$ . Find the dimensions of D called as diffusion constant:
a) $\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{2}}} \right]$
b) $\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{2}}{{\text{T}}^{-4}} \right]$
c)$\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{-3}} \right]$
d)$\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{2}}{{\text{T}}^{-1}} \right]$
Answer
520.5k+ views
Hint: In the above question, the expression for the number of particles crossing a unit area perpendicular to X-axis in unit time is given. First we need to express the quantities in the given expression in terms of their dimensions. Further accordingly substituting them in the above expression will enable us to determine the dimensions of D.
Formula used:
$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$
$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$
$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$
$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$
Complete step-by-step answer:
In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,
$\begin{align}
& n(d)=\dfrac{1}{A\times t} \\
& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\
& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
The difference of the same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is
$\begin{align}
& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\
& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\
& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,
$\begin{align}
& {{x}_{2}}-{{x}_{1}}(d)=L \\
& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
From the relation given in the question, the dimension D(d) of diffusion constant is equal to,
$\begin{align}
& n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)} \\
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]} \\
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\
& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
So, the correct answer is “Option d”.
Note: Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because negative signs can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.
Formula used:
$\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$
$\text{V=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]$
$\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]$
$t=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$
Complete step-by-step answer:
In the above question it is given that ‘n’ is the number of particles crossing a unit area perpendicular to X-axis in unit time. The dimensions of area is $\text{A=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]$ and that of time is $\text{t=}\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]$. Hence the dimension n(d)of n is equal to,
$\begin{align}
& n(d)=\dfrac{1}{A\times t} \\
& \Rightarrow n(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{\text{0}}} \right]\times \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{0}}\text{T} \right]} \\
& \therefore n(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
The difference of the same physical quantity has the same dimension. In the question it is mentioned that ${{n}_{1}}$ and ${{n}_{2}}$ are the number of particles per unit volume. Hence the dimension ${{n}_{2}}-{{n}_{1}}(d)$ of ${{n}_{2}}-{{n}_{1}}$ is
$\begin{align}
& {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{V} \\
& \Rightarrow {{n}_{2}}-{{n}_{1}}(d)=\dfrac{1}{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{3}}{{\text{T}}^{\text{0}}} \right]} \\
& \therefore {{n}_{2}}-{{n}_{1}}(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
Similarly the dimension ${{x}_{2}}-{{x}_{1}}(d)$ of ${{x}_{2}}-{{x}_{1}}$ is given by,
$\begin{align}
& {{x}_{2}}-{{x}_{1}}(d)=L \\
& \therefore {{x}_{2}}-{{x}_{1}}(d)=\text{L=}\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right] \\
\end{align}$
From the relation given in the question, the dimension D(d) of diffusion constant is equal to,
$\begin{align}
& n(d)=-D(d)\dfrac{{{n}_{2}}-{{n}_{1}}(d)}{{{x}_{2}}-{{x}_{1}}(d)} \\
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\dfrac{\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-3}}{{\text{T}}^{\text{0}}} \right]}{\left[ {{\text{M}}^{\text{0}}}\text{L}{{\text{T}}^{\text{0}}} \right]} \\
& \Rightarrow \left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{-2}}}{{\text{T}}^{-1}} \right]=-D(d)\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{-4}}{{\text{T}}^{\text{0}}} \right] \\
& \therefore D(d)=\left[ {{\text{M}}^{\text{0}}}{{\text{L}}^{\text{2}}}{{\text{T}}^{-1}} \right] \\
\end{align}$
So, the correct answer is “Option d”.
Note: Number of particles is basically a constant. Hence it does not have any dimension. It is also to be noted that we have ignored the negative sign in the above relation given. This is because negative signs can be considered as -1. Since -1 is nothing but a constant, hence it can be implied that it is dimensionless. It is also to be noted that the powers of the fundamental dimensions of the above physical quantities are added or subtracted using the laws of exponent.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

