
Number of distinct solutions of
$ \sec x + \tan x = \sqrt 3 ,x \in \left[ {0,3\pi } \right] $ is
Answer
508.2k+ views
Hint: In this question, to find the distinct solutions of the equation $ \sec x + \tan x = \sqrt 3 $ , we need to substitute secx as $ \dfrac{1}{{\cos x}} $ and tanx as $ \dfrac{{\sin x}}{{\cos x}} $ . Now, simplify the equation and then divide the whole equation with two. Then use the formulas
$ \Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $
$ \Rightarrow \sin \dfrac{\pi }{6} = \dfrac{1}{2} $
$ \Rightarrow \cos \dfrac{\pi }{3} = \dfrac{1}{2} $
After substituting these values, use the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ . Now we have cos terms on both sides of the equation. So, we can now easily find the solution for x.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and are supposed to find its number of distinct solutions.
The given equation is: $ \sec x + \tan x = \sqrt 3 $ - - - - - - - - - - - - - - (1)
Now, for solving this equation, we are going to use some trigonometric relations.
First of all, we can write secx as the inverse of cosx that is $ \dfrac{1}{{\cos x}} $ and we can write tanx as $ \dfrac{{\sin x}}{{\cos x}} $ .
Therefore, equation (1) becomes
\[
\Rightarrow \sec x + \tan x = \sqrt 3 \\
\Rightarrow \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\
\]
Now, take cos x as a common denominator and take it to the LHS of the equation.
Therefore, we get
\[
\Rightarrow \dfrac{{1 + \sin x}}{{\cos x}} = \sqrt 3 \\
\Rightarrow 1 + \sin x = \sqrt 3 \cos x \\
\]
\[ \Rightarrow \sqrt 3 \cos x - \sin x = 1\] - - - - - - - - (2)
Now, here we will be dividing equation (2) with 2. Therefore, equation (2) becomes
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2}\cos x - \dfrac{1}{2}\sin x = \dfrac{1}{2}\]- - - - - - - - (3)
Now, we know that $ \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $ and $ \sin \dfrac{\pi }{6} = \dfrac{1}{2} $ and $ \cos \dfrac{\pi }{3} = \dfrac{1}{2} $ . Therefore, substituting these values
in equation (3), we get
\[ \Rightarrow \cos \dfrac{\pi }{6}\cos x - \sin \dfrac{\pi }{6}\sin x = \cos \dfrac{\pi }{3}\]
Now, we know the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ .Therefore, we get
\[ \Rightarrow \cos \left( {x + \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{3}\]
Now, we know that when $ \cos x = \cos y $ , we can say that $ x = y $ . Therefore, we get
\[
\Rightarrow x + \dfrac{\pi }{6} = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\]
$
\Rightarrow x = 2n\pi + \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi + \dfrac{\pi }{6} \\
$
And
$
\Rightarrow x = 2n\pi - \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi - \dfrac{\pi }{2} \\
$
Now, we have to find the solutions in the range $ \left[ {0,3\pi } \right] $ .
For $ n = 0 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = \dfrac{\pi }{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - \dfrac{\pi }{2} $
But, $ - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 2\pi + \dfrac{\pi }{6} = \dfrac{{13\pi }}{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 2\pi - \dfrac{\pi }{2} = \dfrac{{3\pi }}{2} $
For $ n = - 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = - 2\pi + \dfrac{\pi }{6} = \dfrac{{ - 11\pi }}{6} $
But, $ - \dfrac{{11\pi }}{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - 2\pi - \dfrac{\pi }{2} = \dfrac{{ - 5\pi }}{2} $
But, $ \dfrac{{ - 5\pi }}{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 2 $
\[ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 4\pi + \dfrac{\pi }{6}\]
But, $ 4\pi + \dfrac{\pi }{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 4\pi - \dfrac{\pi }{2} $
But, $ 4\pi - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
Hence, the only possible values of x are $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
So, the correct answer is “ $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .”.
Note: We can also solve this question using the identity $ 1 + {\tan ^2}x = {\sec ^2}x $ .
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow \left( {\sec x - \tan x} \right)\left( {\sec x + \tan x} \right) = 1 \;
$
Now, $ \sec x + \tan x = \sqrt 3 $ . Therefore
$ \Rightarrow \left( {\sec x - \tan x} \right)\sqrt 3 = 1 $
$ \Rightarrow \sec x - \tan x = \dfrac{1}{{\sqrt 3 }} $ - - - - - - (3)
Adding equation (1) and (2),we get
$
\underline
\sec x + \tan x = \sqrt 3 \\
\sec x - \tan x = \dfrac{1}{{\sqrt 3 }} \\
\\
2\sec x = \sqrt 3 + \dfrac{1}{{\sqrt 3 }} \\
$
$
\Rightarrow \dfrac{2}{{\cos x}} = \dfrac{4}{{\sqrt 3 }} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2} \;
$
Now, the value of cosx is positive only in the 1st and 4th quadrant. So, the values of x will be
$ 0 + \dfrac{\pi }{6},2\pi - \dfrac{\pi }{6},2\pi + \dfrac{\pi }{6} $
Therefore, the solutions for $ \sec x + \tan x = \sqrt 3 $ will be $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
$ \Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $
$ \Rightarrow \sin \dfrac{\pi }{6} = \dfrac{1}{2} $
$ \Rightarrow \cos \dfrac{\pi }{3} = \dfrac{1}{2} $
After substituting these values, use the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ . Now we have cos terms on both sides of the equation. So, we can now easily find the solution for x.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and are supposed to find its number of distinct solutions.
The given equation is: $ \sec x + \tan x = \sqrt 3 $ - - - - - - - - - - - - - - (1)
Now, for solving this equation, we are going to use some trigonometric relations.
First of all, we can write secx as the inverse of cosx that is $ \dfrac{1}{{\cos x}} $ and we can write tanx as $ \dfrac{{\sin x}}{{\cos x}} $ .
Therefore, equation (1) becomes
\[
\Rightarrow \sec x + \tan x = \sqrt 3 \\
\Rightarrow \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\
\]
Now, take cos x as a common denominator and take it to the LHS of the equation.
Therefore, we get
\[
\Rightarrow \dfrac{{1 + \sin x}}{{\cos x}} = \sqrt 3 \\
\Rightarrow 1 + \sin x = \sqrt 3 \cos x \\
\]
\[ \Rightarrow \sqrt 3 \cos x - \sin x = 1\] - - - - - - - - (2)
Now, here we will be dividing equation (2) with 2. Therefore, equation (2) becomes
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2}\cos x - \dfrac{1}{2}\sin x = \dfrac{1}{2}\]- - - - - - - - (3)
Now, we know that $ \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $ and $ \sin \dfrac{\pi }{6} = \dfrac{1}{2} $ and $ \cos \dfrac{\pi }{3} = \dfrac{1}{2} $ . Therefore, substituting these values
in equation (3), we get
\[ \Rightarrow \cos \dfrac{\pi }{6}\cos x - \sin \dfrac{\pi }{6}\sin x = \cos \dfrac{\pi }{3}\]
Now, we know the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ .Therefore, we get
\[ \Rightarrow \cos \left( {x + \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{3}\]
Now, we know that when $ \cos x = \cos y $ , we can say that $ x = y $ . Therefore, we get
\[
\Rightarrow x + \dfrac{\pi }{6} = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\]
$
\Rightarrow x = 2n\pi + \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi + \dfrac{\pi }{6} \\
$
And
$
\Rightarrow x = 2n\pi - \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi - \dfrac{\pi }{2} \\
$
Now, we have to find the solutions in the range $ \left[ {0,3\pi } \right] $ .
For $ n = 0 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = \dfrac{\pi }{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - \dfrac{\pi }{2} $
But, $ - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 2\pi + \dfrac{\pi }{6} = \dfrac{{13\pi }}{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 2\pi - \dfrac{\pi }{2} = \dfrac{{3\pi }}{2} $
For $ n = - 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = - 2\pi + \dfrac{\pi }{6} = \dfrac{{ - 11\pi }}{6} $
But, $ - \dfrac{{11\pi }}{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - 2\pi - \dfrac{\pi }{2} = \dfrac{{ - 5\pi }}{2} $
But, $ \dfrac{{ - 5\pi }}{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 2 $
\[ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 4\pi + \dfrac{\pi }{6}\]
But, $ 4\pi + \dfrac{\pi }{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 4\pi - \dfrac{\pi }{2} $
But, $ 4\pi - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
Hence, the only possible values of x are $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
So, the correct answer is “ $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .”.
Note: We can also solve this question using the identity $ 1 + {\tan ^2}x = {\sec ^2}x $ .
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow \left( {\sec x - \tan x} \right)\left( {\sec x + \tan x} \right) = 1 \;
$
Now, $ \sec x + \tan x = \sqrt 3 $ . Therefore
$ \Rightarrow \left( {\sec x - \tan x} \right)\sqrt 3 = 1 $
$ \Rightarrow \sec x - \tan x = \dfrac{1}{{\sqrt 3 }} $ - - - - - - (3)
Adding equation (1) and (2),we get
$
\underline
\sec x + \tan x = \sqrt 3 \\
\sec x - \tan x = \dfrac{1}{{\sqrt 3 }} \\
\\
2\sec x = \sqrt 3 + \dfrac{1}{{\sqrt 3 }} \\
$
$
\Rightarrow \dfrac{2}{{\cos x}} = \dfrac{4}{{\sqrt 3 }} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2} \;
$
Now, the value of cosx is positive only in the 1st and 4th quadrant. So, the values of x will be
$ 0 + \dfrac{\pi }{6},2\pi - \dfrac{\pi }{6},2\pi + \dfrac{\pi }{6} $
Therefore, the solutions for $ \sec x + \tan x = \sqrt 3 $ will be $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

