
Number of distinct solutions of
$ \sec x + \tan x = \sqrt 3 ,x \in \left[ {0,3\pi } \right] $ is
Answer
522.3k+ views
Hint: In this question, to find the distinct solutions of the equation $ \sec x + \tan x = \sqrt 3 $ , we need to substitute secx as $ \dfrac{1}{{\cos x}} $ and tanx as $ \dfrac{{\sin x}}{{\cos x}} $ . Now, simplify the equation and then divide the whole equation with two. Then use the formulas
$ \Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $
$ \Rightarrow \sin \dfrac{\pi }{6} = \dfrac{1}{2} $
$ \Rightarrow \cos \dfrac{\pi }{3} = \dfrac{1}{2} $
After substituting these values, use the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ . Now we have cos terms on both sides of the equation. So, we can now easily find the solution for x.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and are supposed to find its number of distinct solutions.
The given equation is: $ \sec x + \tan x = \sqrt 3 $ - - - - - - - - - - - - - - (1)
Now, for solving this equation, we are going to use some trigonometric relations.
First of all, we can write secx as the inverse of cosx that is $ \dfrac{1}{{\cos x}} $ and we can write tanx as $ \dfrac{{\sin x}}{{\cos x}} $ .
Therefore, equation (1) becomes
\[
\Rightarrow \sec x + \tan x = \sqrt 3 \\
\Rightarrow \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\
\]
Now, take cos x as a common denominator and take it to the LHS of the equation.
Therefore, we get
\[
\Rightarrow \dfrac{{1 + \sin x}}{{\cos x}} = \sqrt 3 \\
\Rightarrow 1 + \sin x = \sqrt 3 \cos x \\
\]
\[ \Rightarrow \sqrt 3 \cos x - \sin x = 1\] - - - - - - - - (2)
Now, here we will be dividing equation (2) with 2. Therefore, equation (2) becomes
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2}\cos x - \dfrac{1}{2}\sin x = \dfrac{1}{2}\]- - - - - - - - (3)
Now, we know that $ \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $ and $ \sin \dfrac{\pi }{6} = \dfrac{1}{2} $ and $ \cos \dfrac{\pi }{3} = \dfrac{1}{2} $ . Therefore, substituting these values
in equation (3), we get
\[ \Rightarrow \cos \dfrac{\pi }{6}\cos x - \sin \dfrac{\pi }{6}\sin x = \cos \dfrac{\pi }{3}\]
Now, we know the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ .Therefore, we get
\[ \Rightarrow \cos \left( {x + \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{3}\]
Now, we know that when $ \cos x = \cos y $ , we can say that $ x = y $ . Therefore, we get
\[
\Rightarrow x + \dfrac{\pi }{6} = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\]
$
\Rightarrow x = 2n\pi + \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi + \dfrac{\pi }{6} \\
$
And
$
\Rightarrow x = 2n\pi - \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi - \dfrac{\pi }{2} \\
$
Now, we have to find the solutions in the range $ \left[ {0,3\pi } \right] $ .
For $ n = 0 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = \dfrac{\pi }{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - \dfrac{\pi }{2} $
But, $ - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 2\pi + \dfrac{\pi }{6} = \dfrac{{13\pi }}{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 2\pi - \dfrac{\pi }{2} = \dfrac{{3\pi }}{2} $
For $ n = - 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = - 2\pi + \dfrac{\pi }{6} = \dfrac{{ - 11\pi }}{6} $
But, $ - \dfrac{{11\pi }}{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - 2\pi - \dfrac{\pi }{2} = \dfrac{{ - 5\pi }}{2} $
But, $ \dfrac{{ - 5\pi }}{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 2 $
\[ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 4\pi + \dfrac{\pi }{6}\]
But, $ 4\pi + \dfrac{\pi }{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 4\pi - \dfrac{\pi }{2} $
But, $ 4\pi - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
Hence, the only possible values of x are $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
So, the correct answer is “ $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .”.
Note: We can also solve this question using the identity $ 1 + {\tan ^2}x = {\sec ^2}x $ .
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow \left( {\sec x - \tan x} \right)\left( {\sec x + \tan x} \right) = 1 \;
$
Now, $ \sec x + \tan x = \sqrt 3 $ . Therefore
$ \Rightarrow \left( {\sec x - \tan x} \right)\sqrt 3 = 1 $
$ \Rightarrow \sec x - \tan x = \dfrac{1}{{\sqrt 3 }} $ - - - - - - (3)
Adding equation (1) and (2),we get
$
\underline
\sec x + \tan x = \sqrt 3 \\
\sec x - \tan x = \dfrac{1}{{\sqrt 3 }} \\
\\
2\sec x = \sqrt 3 + \dfrac{1}{{\sqrt 3 }} \\
$
$
\Rightarrow \dfrac{2}{{\cos x}} = \dfrac{4}{{\sqrt 3 }} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2} \;
$
Now, the value of cosx is positive only in the 1st and 4th quadrant. So, the values of x will be
$ 0 + \dfrac{\pi }{6},2\pi - \dfrac{\pi }{6},2\pi + \dfrac{\pi }{6} $
Therefore, the solutions for $ \sec x + \tan x = \sqrt 3 $ will be $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
$ \Rightarrow \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $
$ \Rightarrow \sin \dfrac{\pi }{6} = \dfrac{1}{2} $
$ \Rightarrow \cos \dfrac{\pi }{3} = \dfrac{1}{2} $
After substituting these values, use the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ . Now we have cos terms on both sides of the equation. So, we can now easily find the solution for x.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and are supposed to find its number of distinct solutions.
The given equation is: $ \sec x + \tan x = \sqrt 3 $ - - - - - - - - - - - - - - (1)
Now, for solving this equation, we are going to use some trigonometric relations.
First of all, we can write secx as the inverse of cosx that is $ \dfrac{1}{{\cos x}} $ and we can write tanx as $ \dfrac{{\sin x}}{{\cos x}} $ .
Therefore, equation (1) becomes
\[
\Rightarrow \sec x + \tan x = \sqrt 3 \\
\Rightarrow \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} = \sqrt 3 \\
\]
Now, take cos x as a common denominator and take it to the LHS of the equation.
Therefore, we get
\[
\Rightarrow \dfrac{{1 + \sin x}}{{\cos x}} = \sqrt 3 \\
\Rightarrow 1 + \sin x = \sqrt 3 \cos x \\
\]
\[ \Rightarrow \sqrt 3 \cos x - \sin x = 1\] - - - - - - - - (2)
Now, here we will be dividing equation (2) with 2. Therefore, equation (2) becomes
\[ \Rightarrow \dfrac{{\sqrt 3 }}{2}\cos x - \dfrac{1}{2}\sin x = \dfrac{1}{2}\]- - - - - - - - (3)
Now, we know that $ \cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} $ and $ \sin \dfrac{\pi }{6} = \dfrac{1}{2} $ and $ \cos \dfrac{\pi }{3} = \dfrac{1}{2} $ . Therefore, substituting these values
in equation (3), we get
\[ \Rightarrow \cos \dfrac{\pi }{6}\cos x - \sin \dfrac{\pi }{6}\sin x = \cos \dfrac{\pi }{3}\]
Now, we know the formula $ \cos A\cos B - \sin A\sin B = \cos \left( {A + B} \right) $ .Therefore, we get
\[ \Rightarrow \cos \left( {x + \dfrac{\pi }{6}} \right) = \cos \dfrac{\pi }{3}\]
Now, we know that when $ \cos x = \cos y $ , we can say that $ x = y $ . Therefore, we get
\[
\Rightarrow x + \dfrac{\pi }{6} = 2n\pi \pm \dfrac{\pi }{3} \\
\Rightarrow x = 2n\pi \pm \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\]
$
\Rightarrow x = 2n\pi + \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi + \dfrac{\pi }{6} \\
$
And
$
\Rightarrow x = 2n\pi - \dfrac{\pi }{3} - \dfrac{\pi }{6} \\
\Rightarrow x = 2n\pi - \dfrac{\pi }{2} \\
$
Now, we have to find the solutions in the range $ \left[ {0,3\pi } \right] $ .
For $ n = 0 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = \dfrac{\pi }{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - \dfrac{\pi }{2} $
But, $ - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 2\pi + \dfrac{\pi }{6} = \dfrac{{13\pi }}{6} $
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 2\pi - \dfrac{\pi }{2} = \dfrac{{3\pi }}{2} $
For $ n = - 1 $ :
$ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = - 2\pi + \dfrac{\pi }{6} = \dfrac{{ - 11\pi }}{6} $
But, $ - \dfrac{{11\pi }}{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = - 2\pi - \dfrac{\pi }{2} = \dfrac{{ - 5\pi }}{2} $
But, $ \dfrac{{ - 5\pi }}{2} \notin \left[ {0,3\pi } \right] $ .
For $ n = 2 $
\[ \Rightarrow x = 2n\pi + \dfrac{\pi }{6} = 4\pi + \dfrac{\pi }{6}\]
But, $ 4\pi + \dfrac{\pi }{6} \notin \left[ {0,3\pi } \right] $ .
$ \Rightarrow x = 2n\pi - \dfrac{\pi }{2} = 4\pi - \dfrac{\pi }{2} $
But, $ 4\pi - \dfrac{\pi }{2} \notin \left[ {0,3\pi } \right] $ .
Hence, the only possible values of x are $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
So, the correct answer is “ $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .”.
Note: We can also solve this question using the identity $ 1 + {\tan ^2}x = {\sec ^2}x $ .
$
\Rightarrow {\sec ^2}x - {\tan ^2}x = 1 \\
\Rightarrow \left( {\sec x - \tan x} \right)\left( {\sec x + \tan x} \right) = 1 \;
$
Now, $ \sec x + \tan x = \sqrt 3 $ . Therefore
$ \Rightarrow \left( {\sec x - \tan x} \right)\sqrt 3 = 1 $
$ \Rightarrow \sec x - \tan x = \dfrac{1}{{\sqrt 3 }} $ - - - - - - (3)
Adding equation (1) and (2),we get
$
\underline
\sec x + \tan x = \sqrt 3 \\
\sec x - \tan x = \dfrac{1}{{\sqrt 3 }} \\
\\
2\sec x = \sqrt 3 + \dfrac{1}{{\sqrt 3 }} \\
$
$
\Rightarrow \dfrac{2}{{\cos x}} = \dfrac{4}{{\sqrt 3 }} \\
\Rightarrow \cos x = \dfrac{{\sqrt 3 }}{2} \;
$
Now, the value of cosx is positive only in the 1st and 4th quadrant. So, the values of x will be
$ 0 + \dfrac{\pi }{6},2\pi - \dfrac{\pi }{6},2\pi + \dfrac{\pi }{6} $
Therefore, the solutions for $ \sec x + \tan x = \sqrt 3 $ will be $ \dfrac{\pi }{6},\dfrac{{13\pi }}{6},\dfrac{{3\pi }}{2} $ .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

