
Number of complex numbers $ z $ such that $ \left| z \right| = 1 $ and $ \left| {\dfrac{z}{{\bar z}} + \dfrac{{\bar z}}{z}} \right| = 1 $ is $ \left( {\arg \left( z \right) \in \left[ {0,2\pi } \right]} \right) $ .
A. $ 4 $
B. $ 6 $
C. $ 8 $
D.More than $ 8 $
Answer
573.3k+ views
Hint: We know that $ \left| {z\bar z} \right| = {\left| z \right|^2} $ .So, $ \left| {{z^2} + {{\bar z}^2}} \right| $ will be equal to 1. Instead of $ z $ take $ z = x + iy $ . And then substituting the value of $ z $ we will get $ {x^2} - {y^2} = \dfrac{1}{2} $ and we also know that $ {x^2} + {y^2} = 1 $ . Solve that equation then we get the values of $ x $ and $ y $ .
Complete step-by-step answer:
It is given that $ \left| z \right| = 1 $ .
Also, given that $ \left| {\dfrac{{{z^2} + {{\bar z}^2}}}{{\bar zz}}} \right| = 1 $ .........(1)
Since it is known that $ z\bar z = {\left| z \right|^2} $
Since, we know that $ \left| z \right| = 1 $ , so we can say that $ z\bar z = 1 $ .
Substitute the value $ z\bar z = 1 $ in the equation (1), we get,
$ \left| {{z^2} + {{\bar z}^2}} \right| = 1 $ ..........(2)
Since, $ z $ is a complex number the value of $ z $ as $ x + iy $ where $ x,y $ are real and $ i $ is imaginary number.
We know the formula to find the conjugate of $ z $ is $ x - iy $ .
Since, the value of z is $ z = x + iy $ .
Then if we square on both sides we get,
$ \begin{array}{c}
{z^2} = {\left( {x + iy} \right)^2}\\
= \left( {x + iy} \right)\left( {x + iy} \right)\\
= {x^2} - {y^2} + 2ixy
\end{array} $ .........(3)
Since, we know $ \bar z = x - iy $ . If we square on both sides for the equation we get,
$ \begin{array}{c}
{{\bar z}^2} = {\left( {x - iy} \right)^2}\\
= \left( {x - iy} \right)\left( {x - iy} \right)\\
= {x^2} - {y^2} - 2ixy
\end{array} $ ..............(4)
On substituting (3) and (4) in (2) we get,
$ \begin{array}{c}
\left| {{z^2} + {{\bar z}^2}} \right| = 1\\
\left| {{x^2} - {y^2} + 2ixy + {x^2} - {y^2} - 2ixy} \right| = 1
\end{array} $
Now, in the above equation equal but opposite sines $ 2ixy $ and $ - 2ixy $ will get cancelled, we obtain,
$ \begin{array}{c}
\left| {2{x^2} - 2{y^2}} \right| = 1\\
{x^2} - {y^2} = \dfrac{1}{2}
\end{array} $ ..............(5)
And it is known that $ {\left| z \right|^2} = 1 $ since $ z = x + iy $ we get,
$ \begin{array}{l}
{\left| {x + iy} \right|^2} = 1\\
{x^2} + {y^2} = 1
\end{array} $ ............(6)
On equating the equations (5) and (6) we get,
$ \begin{array}{c}
2{x^2} = \dfrac{1}{2} + 1\\
2{x^2} = \dfrac{3}{2}\\
{x^2} = \dfrac{3}{4}
\end{array} $
If we take the square root on both sides we get,
$ x = \pm \dfrac{{\sqrt 3 }}{2} $
On substituting the value of $ x $ in (5) we get,
$ \begin{array}{c}
\dfrac{3}{4} - {y^2} = \dfrac{1}{2}\\
\dfrac{3}{4} - \dfrac{1}{2} = {y^2}\\
{y^2} = \dfrac{3}{4} - \dfrac{2}{4}
\end{array} $
The value for $ {y^2} $ will be calculated as,
$ {y^2} = \dfrac{1}{4} $
Taking the square root on both sides we get,
$ y = \pm \dfrac{1}{2} $
Hence, the value of y is $ \dfrac{1}{2} $ and $ - \dfrac{1}{2} $ .
The possible complex numbers are $ z = \dfrac{{\sqrt 3 }}{2} + i\dfrac{1}{2} $ , $ z = \dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2} $ , $ z = - \dfrac{{\sqrt 3 }}{2} + i\dfrac{1}{2} $ and $ z = \dfrac{-{\sqrt 3 }}{2} - \dfrac{i}{2} $.
Therefore, the complex numbers $ z $ are $ 4 $.
So, the correct answer is “Option A”.
Note: Always the value of $ \left| z \right| $ will not be one. In complex numbers if the imaginary part is zero that is $ y = 0 $ then the complex number is real. In the complex number if the real number is zero that is $ x = 0 $ the complex number is purely imaginary .
Complete step-by-step answer:
It is given that $ \left| z \right| = 1 $ .
Also, given that $ \left| {\dfrac{{{z^2} + {{\bar z}^2}}}{{\bar zz}}} \right| = 1 $ .........(1)
Since it is known that $ z\bar z = {\left| z \right|^2} $
Since, we know that $ \left| z \right| = 1 $ , so we can say that $ z\bar z = 1 $ .
Substitute the value $ z\bar z = 1 $ in the equation (1), we get,
$ \left| {{z^2} + {{\bar z}^2}} \right| = 1 $ ..........(2)
Since, $ z $ is a complex number the value of $ z $ as $ x + iy $ where $ x,y $ are real and $ i $ is imaginary number.
We know the formula to find the conjugate of $ z $ is $ x - iy $ .
Since, the value of z is $ z = x + iy $ .
Then if we square on both sides we get,
$ \begin{array}{c}
{z^2} = {\left( {x + iy} \right)^2}\\
= \left( {x + iy} \right)\left( {x + iy} \right)\\
= {x^2} - {y^2} + 2ixy
\end{array} $ .........(3)
Since, we know $ \bar z = x - iy $ . If we square on both sides for the equation we get,
$ \begin{array}{c}
{{\bar z}^2} = {\left( {x - iy} \right)^2}\\
= \left( {x - iy} \right)\left( {x - iy} \right)\\
= {x^2} - {y^2} - 2ixy
\end{array} $ ..............(4)
On substituting (3) and (4) in (2) we get,
$ \begin{array}{c}
\left| {{z^2} + {{\bar z}^2}} \right| = 1\\
\left| {{x^2} - {y^2} + 2ixy + {x^2} - {y^2} - 2ixy} \right| = 1
\end{array} $
Now, in the above equation equal but opposite sines $ 2ixy $ and $ - 2ixy $ will get cancelled, we obtain,
$ \begin{array}{c}
\left| {2{x^2} - 2{y^2}} \right| = 1\\
{x^2} - {y^2} = \dfrac{1}{2}
\end{array} $ ..............(5)
And it is known that $ {\left| z \right|^2} = 1 $ since $ z = x + iy $ we get,
$ \begin{array}{l}
{\left| {x + iy} \right|^2} = 1\\
{x^2} + {y^2} = 1
\end{array} $ ............(6)
On equating the equations (5) and (6) we get,
$ \begin{array}{c}
2{x^2} = \dfrac{1}{2} + 1\\
2{x^2} = \dfrac{3}{2}\\
{x^2} = \dfrac{3}{4}
\end{array} $
If we take the square root on both sides we get,
$ x = \pm \dfrac{{\sqrt 3 }}{2} $
On substituting the value of $ x $ in (5) we get,
$ \begin{array}{c}
\dfrac{3}{4} - {y^2} = \dfrac{1}{2}\\
\dfrac{3}{4} - \dfrac{1}{2} = {y^2}\\
{y^2} = \dfrac{3}{4} - \dfrac{2}{4}
\end{array} $
The value for $ {y^2} $ will be calculated as,
$ {y^2} = \dfrac{1}{4} $
Taking the square root on both sides we get,
$ y = \pm \dfrac{1}{2} $
Hence, the value of y is $ \dfrac{1}{2} $ and $ - \dfrac{1}{2} $ .
The possible complex numbers are $ z = \dfrac{{\sqrt 3 }}{2} + i\dfrac{1}{2} $ , $ z = \dfrac{{\sqrt 3 }}{2} - i\dfrac{1}{2} $ , $ z = - \dfrac{{\sqrt 3 }}{2} + i\dfrac{1}{2} $ and $ z = \dfrac{-{\sqrt 3 }}{2} - \dfrac{i}{2} $.
Therefore, the complex numbers $ z $ are $ 4 $.
So, the correct answer is “Option A”.
Note: Always the value of $ \left| z \right| $ will not be one. In complex numbers if the imaginary part is zero that is $ y = 0 $ then the complex number is real. In the complex number if the real number is zero that is $ x = 0 $ the complex number is purely imaginary .
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

