Answer
Verified
387.9k+ views
Hint: First we have to define what the terms we need to solve the problem are. First of all, we just need to know such things about the perfect numbers, which are the numbers that obtain by multiplying any whole number (zero to infinity) twice, or the square of the given number yields a whole number like $\sqrt 9 = 3$ or $9 = {3^2}$.
Complete step-by-step solution:
Since the given question is about non-perfect square numbers, there are $2n$ natural numbers that are lying between two consecutive perfect square (as per hint) numbers ${n^2}$ and ${(n + 1)^2}$. so, we will count only natural numbers except for the not perfect squares.
From the given question we have, ${15^2}$ and ${16^2}$, since we can able to write ${16^2}$ as ${(15 + 1)^2}$
Now we will need to find the non-perfect numbers between ${15^2}$ and ${(15 + 1)^2}$, thus $n = 15$ and there are $2n$ natural numbers. now substitute that n in the perfect square equation which is $2(15)$, the natural number for the non-perfect square. Hence further solving we get count $30$ numbers of non-perfect square numbers that are between ${15^2}$ and ${16^2}$
We can also able to solve this problem by comparing the two square numbers and subtracted by one
Which is ${15^2}$,${16^2}$ can be written as ${15^2} = 225$ and ${16^2} = 256$
The formula for this method is $n - m - 1$ (m is the smallest among the both and n is the greater one) and n is always less than m. Hence, we get $n - m - 1 = 256 - 225 - 1$ solving this we get $256 - 225 - 1 = 30$
Hence there are $30$ non-perfect square numbers between ${15^2}$ and ${16^2}$
Note: Since the equation is about non-perfect square numbers between ${15^2}$ and ${16^2}$, so that only the substrate one occurs $n - m - 1$ if not then like non-perfect square numbers from ${15^2}$ and ${16^2}$, we can simply find by using the $n - m$. So, between is the key for the different formulas.
Complete step-by-step solution:
Since the given question is about non-perfect square numbers, there are $2n$ natural numbers that are lying between two consecutive perfect square (as per hint) numbers ${n^2}$ and ${(n + 1)^2}$. so, we will count only natural numbers except for the not perfect squares.
From the given question we have, ${15^2}$ and ${16^2}$, since we can able to write ${16^2}$ as ${(15 + 1)^2}$
Now we will need to find the non-perfect numbers between ${15^2}$ and ${(15 + 1)^2}$, thus $n = 15$ and there are $2n$ natural numbers. now substitute that n in the perfect square equation which is $2(15)$, the natural number for the non-perfect square. Hence further solving we get count $30$ numbers of non-perfect square numbers that are between ${15^2}$ and ${16^2}$
We can also able to solve this problem by comparing the two square numbers and subtracted by one
Which is ${15^2}$,${16^2}$ can be written as ${15^2} = 225$ and ${16^2} = 256$
The formula for this method is $n - m - 1$ (m is the smallest among the both and n is the greater one) and n is always less than m. Hence, we get $n - m - 1 = 256 - 225 - 1$ solving this we get $256 - 225 - 1 = 30$
Hence there are $30$ non-perfect square numbers between ${15^2}$ and ${16^2}$
Note: Since the equation is about non-perfect square numbers between ${15^2}$ and ${16^2}$, so that only the substrate one occurs $n - m - 1$ if not then like non-perfect square numbers from ${15^2}$ and ${16^2}$, we can simply find by using the $n - m$. So, between is the key for the different formulas.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths