
Non perfect square number between square of 21 and 22 are:
A.42
B.44
C.441
D.404
Answer
487.2k+ views
Hint: In general, there are 2n non perfect square numbers between the square of the numbers n and (n+1). Non-perfect square numbers always end with 2, 3, 7 or 8. So, all other numbers ending with 0, 1, 4, 5, 6 or 9 are perfect square numbers.
Complete step-by-step answer:
Step1 we have to find the non-perfect squares between squares of 21 and 22.
Given number s are 21 and 22. Number 21 and 22 are consecutive integers. Because consecutive means following continuously unbroken. So means that consecutive integers follow a sequence where each number is one more than the previous number.
So, 22 is one more than the previous number 21. I.e. 21 + 1 =22.
Step 2 The formula is find consecutive integers n, n+1, n+2 ……………….
So, consider n =21, where n is denoted as natural number.
Therefore 21=21+1=n+1 where n =21
According to the question, we have to find the non-perfect square number between the square of 21 and 22. i.e. from step 2, we find the non perfect square number between .
The square of n i.e. square of 21 is equal to 441. And the square of n+1 i.e. square of 22 is equal to 484.
Step 3 Consider and
Let us assume any natural number n and (n+1) then :
.
So, we find that between there are 2n numbers which is 1 less than the difference of two squares.
Step 4 here n =21
And n+1 = 22
Therefore, non perfect square numbers between 21 and 22= 2n= 2× 21 = 42.
So, the non-perfect square number between 21 and 22 is 42. Hence, option A is the correct answer.
Note: When we multiply an integer (a whole number, positive, negative or zero) times itself, the resulting product is called a square number , or a perfect square.
So, 0,1,4,9,16 and so on are all square numbers.
Squares of all integers are known as the perfect squares. All perfect squares end in 1,4,5, 6,9 or 0. Therefore, the number ends in 2, 3, 7, or 9 is not a perfect square.
Complete step-by-step answer:
Step1 we have to find the non-perfect squares between squares of 21 and 22.
Given number s are 21 and 22. Number 21 and 22 are consecutive integers. Because consecutive means following continuously unbroken. So means that consecutive integers follow a sequence where each number is one more than the previous number.
So, 22 is one more than the previous number 21. I.e. 21 + 1 =22.
Step 2 The formula is find consecutive integers n, n+1, n+2 ……………….
So, consider n =21, where n is denoted as natural number.
Therefore 21=21+1=n+1 where n =21
According to the question, we have to find the non-perfect square number between the square of 21 and 22. i.e. from step 2, we find the non perfect square number between
The square of n i.e. square of 21 is equal to 441. And the square of n+1 i.e. square of 22 is equal to 484.
Step 3 Consider
Let us assume any natural number n and (n+1) then :
So, we find that between
Step 4 here n =21
And n+1 = 22
Therefore, non perfect square numbers between 21 and 22= 2n= 2× 21 = 42.
So, the non-perfect square number between 21 and 22 is 42. Hence, option A is the correct answer.
Note: When we multiply an integer (a whole number, positive, negative or zero) times itself, the resulting product is called a square number , or a perfect square.
So, 0,1,4,9,16 and so on are all square numbers.
Squares of all integers are known as the perfect squares. All perfect squares end in 1,4,5, 6,9 or 0. Therefore, the number ends in 2, 3, 7, or 9 is not a perfect square.
Latest Vedantu courses for you
Grade 8 | CBSE | SCHOOL | English
Vedantu 8 CBSE Pro Course - (2025-26)
School Full course for CBSE students
₹45,300 per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
How many crores make 10 million class 7 maths CBSE

Differentiate between map and globe class 7 social science CBSE

A speed of 14 meters per second is the same as A28 class 7 maths CBSE

Find HCF and LCM of 510 and 92 by applying the prime class 7 maths CBSE

Write an essay on the topic If I were a teacher class 7 english CBSE

The length breadth and height of a room are 8m 25cm class 7 maths CBSE
