
How many nitrate ions($N{{O}_{3}}^{1-}$), and how many oxygen atoms are present in 1.00 microgram of magnesium nitrate, $Mg{{(N{{O}_{3}})}_{2}}$ ?
Answer
537.3k+ views
Hint: We will attempt this question by calculating total no. of magnesium nitrate molecules in the given mass and then moving further, we will calculate total number of nitrate ions and oxygen atoms present in it.
Formula used:
Total no. of atoms or molecules or ions = ${{N}_{A}}\times n$
Complete answer:
First of all, we need to convert a given mass unit into standard units for easy calculations.
Given mass= 1.00 microgram = $1.00\mu g\times \dfrac{1\text{ }g}{{{10}^{6}}\mu g}=1.00\times {{10}^{-6}}$
Now, let’s calculate total no. of moles of $Mg{{(N{{O}_{3}})}_{2}}$=
\[\dfrac{1.00\times {{10}^{-6}}g}{148.3g}\times 1mole\text{ Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}=6.743\times {{10}^{-9}}\text{moles Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}\]
Total no. of molecules (formula units) of $Mg{{(N{{O}_{3}})}_{2}}$= ${{N}_{A}}\times n$
Where
${{N}_{A}}=6.022\times {{10}^{23}}$
n= no. of moles of
=$6.743\times {{10}^{-9}}moles\text{ }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6.022\times {{10}^{23}}\text{ formula units of }Mg{{(N{{O}_{3}})}_{2}}}{1mole\text{ }Mg{{(N{{O}_{3}})}_{2}}}$
=$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}$
We know that, 1 formula unit of $Mg{{(N{{O}_{3}})}_{2}}$ contain 1 ion of $M{{g}^{2+}}$and 2 ions of $N{{O}_{3}}^{1-}$ .
Therefore, no. of nitrate ions =
$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{2\text{ N}{{\text{O}}_{3}}^{1-}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}$
= $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ ions
Further we see that, 1 $N{{O}_{3}}^{1-}$ion has 1 N atom and 3 O atoms.
Therefore, no. of oxygen atom =
$8.12\times {{10}^{15}}N{{O}_{3}}^{1-}\times \dfrac{3\text{ O atoms}}{1N{{O}_{3}}^{1-}}$
= $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$
Hence, there are $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ions and $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$ in 1 microgram of $Mg{{(N{{O}_{3}})}_{2}}$
Note:
If question does not asked about total no. of $N{{O}_{3}}^{1-}$ions and we have to directly calculate total no. of N or O atoms, then we must directly count total no. of N or O atoms in $Mg{{(N{{O}_{3}})}_{2}}$ molecule and multiply it with total formula units of$Mg{{(N{{O}_{3}})}_{2}}$.
For example:-
no. of oxygen atom =\[\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6\text{ O atoms}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}=2.44\times {{10}^{16}}\text{atoms of O}\]
Similarly, it can be done for N atoms as well.
Formula used:
Total no. of atoms or molecules or ions = ${{N}_{A}}\times n$
Complete answer:
First of all, we need to convert a given mass unit into standard units for easy calculations.
Given mass= 1.00 microgram = $1.00\mu g\times \dfrac{1\text{ }g}{{{10}^{6}}\mu g}=1.00\times {{10}^{-6}}$
Now, let’s calculate total no. of moles of $Mg{{(N{{O}_{3}})}_{2}}$=
\[\dfrac{1.00\times {{10}^{-6}}g}{148.3g}\times 1mole\text{ Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}=6.743\times {{10}^{-9}}\text{moles Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}\]
Total no. of molecules (formula units) of $Mg{{(N{{O}_{3}})}_{2}}$= ${{N}_{A}}\times n$
Where
${{N}_{A}}=6.022\times {{10}^{23}}$
n= no. of moles of
=$6.743\times {{10}^{-9}}moles\text{ }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6.022\times {{10}^{23}}\text{ formula units of }Mg{{(N{{O}_{3}})}_{2}}}{1mole\text{ }Mg{{(N{{O}_{3}})}_{2}}}$
=$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}$
We know that, 1 formula unit of $Mg{{(N{{O}_{3}})}_{2}}$ contain 1 ion of $M{{g}^{2+}}$and 2 ions of $N{{O}_{3}}^{1-}$ .
Therefore, no. of nitrate ions =
$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{2\text{ N}{{\text{O}}_{3}}^{1-}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}$
= $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ ions
Further we see that, 1 $N{{O}_{3}}^{1-}$ion has 1 N atom and 3 O atoms.
Therefore, no. of oxygen atom =
$8.12\times {{10}^{15}}N{{O}_{3}}^{1-}\times \dfrac{3\text{ O atoms}}{1N{{O}_{3}}^{1-}}$
= $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$
Hence, there are $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ions and $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$ in 1 microgram of $Mg{{(N{{O}_{3}})}_{2}}$
Note:
If question does not asked about total no. of $N{{O}_{3}}^{1-}$ions and we have to directly calculate total no. of N or O atoms, then we must directly count total no. of N or O atoms in $Mg{{(N{{O}_{3}})}_{2}}$ molecule and multiply it with total formula units of$Mg{{(N{{O}_{3}})}_{2}}$.
For example:-
no. of oxygen atom =\[\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6\text{ O atoms}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}=2.44\times {{10}^{16}}\text{atoms of O}\]
Similarly, it can be done for N atoms as well.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

