
How many nitrate ions($N{{O}_{3}}^{1-}$), and how many oxygen atoms are present in 1.00 microgram of magnesium nitrate, $Mg{{(N{{O}_{3}})}_{2}}$ ?
Answer
525.3k+ views
Hint: We will attempt this question by calculating total no. of magnesium nitrate molecules in the given mass and then moving further, we will calculate total number of nitrate ions and oxygen atoms present in it.
Formula used:
Total no. of atoms or molecules or ions = ${{N}_{A}}\times n$
Complete answer:
First of all, we need to convert a given mass unit into standard units for easy calculations.
Given mass= 1.00 microgram = $1.00\mu g\times \dfrac{1\text{ }g}{{{10}^{6}}\mu g}=1.00\times {{10}^{-6}}$
Now, let’s calculate total no. of moles of $Mg{{(N{{O}_{3}})}_{2}}$=
\[\dfrac{1.00\times {{10}^{-6}}g}{148.3g}\times 1mole\text{ Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}=6.743\times {{10}^{-9}}\text{moles Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}\]
Total no. of molecules (formula units) of $Mg{{(N{{O}_{3}})}_{2}}$= ${{N}_{A}}\times n$
Where
${{N}_{A}}=6.022\times {{10}^{23}}$
n= no. of moles of
=$6.743\times {{10}^{-9}}moles\text{ }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6.022\times {{10}^{23}}\text{ formula units of }Mg{{(N{{O}_{3}})}_{2}}}{1mole\text{ }Mg{{(N{{O}_{3}})}_{2}}}$
=$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}$
We know that, 1 formula unit of $Mg{{(N{{O}_{3}})}_{2}}$ contain 1 ion of $M{{g}^{2+}}$and 2 ions of $N{{O}_{3}}^{1-}$ .
Therefore, no. of nitrate ions =
$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{2\text{ N}{{\text{O}}_{3}}^{1-}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}$
= $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ ions
Further we see that, 1 $N{{O}_{3}}^{1-}$ion has 1 N atom and 3 O atoms.
Therefore, no. of oxygen atom =
$8.12\times {{10}^{15}}N{{O}_{3}}^{1-}\times \dfrac{3\text{ O atoms}}{1N{{O}_{3}}^{1-}}$
= $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$
Hence, there are $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ions and $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$ in 1 microgram of $Mg{{(N{{O}_{3}})}_{2}}$
Note:
If question does not asked about total no. of $N{{O}_{3}}^{1-}$ions and we have to directly calculate total no. of N or O atoms, then we must directly count total no. of N or O atoms in $Mg{{(N{{O}_{3}})}_{2}}$ molecule and multiply it with total formula units of$Mg{{(N{{O}_{3}})}_{2}}$.
For example:-
no. of oxygen atom =\[\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6\text{ O atoms}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}=2.44\times {{10}^{16}}\text{atoms of O}\]
Similarly, it can be done for N atoms as well.
Formula used:
Total no. of atoms or molecules or ions = ${{N}_{A}}\times n$
Complete answer:
First of all, we need to convert a given mass unit into standard units for easy calculations.
Given mass= 1.00 microgram = $1.00\mu g\times \dfrac{1\text{ }g}{{{10}^{6}}\mu g}=1.00\times {{10}^{-6}}$
Now, let’s calculate total no. of moles of $Mg{{(N{{O}_{3}})}_{2}}$=
\[\dfrac{1.00\times {{10}^{-6}}g}{148.3g}\times 1mole\text{ Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}=6.743\times {{10}^{-9}}\text{moles Mg(N}{{\text{O}}_{3}}{{\text{)}}_{2}}\]
Total no. of molecules (formula units) of $Mg{{(N{{O}_{3}})}_{2}}$= ${{N}_{A}}\times n$
Where
${{N}_{A}}=6.022\times {{10}^{23}}$
n= no. of moles of
=$6.743\times {{10}^{-9}}moles\text{ }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6.022\times {{10}^{23}}\text{ formula units of }Mg{{(N{{O}_{3}})}_{2}}}{1mole\text{ }Mg{{(N{{O}_{3}})}_{2}}}$
=$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}$
We know that, 1 formula unit of $Mg{{(N{{O}_{3}})}_{2}}$ contain 1 ion of $M{{g}^{2+}}$and 2 ions of $N{{O}_{3}}^{1-}$ .
Therefore, no. of nitrate ions =
$\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{2\text{ N}{{\text{O}}_{3}}^{1-}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}$
= $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ ions
Further we see that, 1 $N{{O}_{3}}^{1-}$ion has 1 N atom and 3 O atoms.
Therefore, no. of oxygen atom =
$8.12\times {{10}^{15}}N{{O}_{3}}^{1-}\times \dfrac{3\text{ O atoms}}{1N{{O}_{3}}^{1-}}$
= $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$
Hence, there are $8.12\times {{10}^{15}}N{{O}_{3}}^{1-}$ions and $2.44\times {{10}^{16}}\text{ }atoms\text{ }of\text{ }O$ in 1 microgram of $Mg{{(N{{O}_{3}})}_{2}}$
Note:
If question does not asked about total no. of $N{{O}_{3}}^{1-}$ions and we have to directly calculate total no. of N or O atoms, then we must directly count total no. of N or O atoms in $Mg{{(N{{O}_{3}})}_{2}}$ molecule and multiply it with total formula units of$Mg{{(N{{O}_{3}})}_{2}}$.
For example:-
no. of oxygen atom =\[\text{4}\text{.061}\times \text{1}{{\text{0}}^{15}}\text{formula units of }Mg{{(N{{O}_{3}})}_{2}}\times \dfrac{6\text{ O atoms}}{\text{1 formula unit of }Mg{{(N{{O}_{3}})}_{2}}}=2.44\times {{10}^{16}}\text{atoms of O}\]
Similarly, it can be done for N atoms as well.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

