
Name the type of quadrilateral formed, if any by the following points and give reasons for your answer.
(i)\[( - 1, - 2),(1,0),( - 1,2),( - 3,0)\]
(ii)\[( - 3,5),(3,1),(0,3),( - 1, - 4)\]
(iii)\[(4,5),(7,6),(4,3),(1,2)\]
Answer
558.9k+ views
Hint: Here we can use distance formula to calculate distance between the two points. After calculating all the distances required. So, that we can verify the shape of the quadrilateral formed using those specific points.
Formula used:
Distance between the two points = \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] i.e. Distance Formula.
Complete step-by-step answer:
(i) The points given in question are \[A = \left( { - 1, - 2} \right)\] , \[B = \left( {1,0} \right)\] , \[C = \left( { - 1,2} \right)\] , and \[D = \left( { - 3,0} \right)\;\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
BC = \[\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {2 + 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
CD = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 1 + 3} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
AC = \[\sqrt {{{\left( { - 1 + 1} \right)}^2} + {{\left( { - 2 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 16} \]
\[ \Rightarrow \sqrt {16} = \sqrt 4 \]
BD = \[\sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 0 \right)}^2}} \]
\[ \Rightarrow \sqrt {16 + 0} \]
\[ \Rightarrow \sqrt {16} = 4\]
As, all the four sides that are AB, BC, CD and DA are equal and the diagonals AC and BD are equal.
Hence, Quadrilateral ABCD is a square.
(ii) The points given in question are \[A = \left( { - 3,5} \right)\] , \[B = \left( {3,1} \right)\] , \[C = \left( {0,3} \right)\] , and \[D = \left( { - 1, - 4} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {3 + 3} \right)}^2} + {{\left( {1 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
BC = \[\sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {3 - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 4} \]
\[ \Rightarrow \sqrt {13} \]
CD = \[\sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( { - 4 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}} \]
\[ \Rightarrow \sqrt {1 + 49} \]
\[ \Rightarrow \sqrt {50} = 5\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {5 + 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 9 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 81} \]
\[ \Rightarrow \sqrt {85} \]
Here \[AB \ne BC \ne CD \ne DA\]
Hence, It is just a quadrilateral.
(iii) The points given in question are \[A = \left( {4,5} \right)\] , \[B = \left( {7,6} \right)\] , \[C = \left( {4,3} \right)\;\] , and \[D = \left( {1,2} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {7 - 4} \right)}^2} + {{\left( {6 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 3 \right)}^2} + {{\left( 1 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
BC = \[\sqrt {{{\left( {4 - 7} \right)}^2} + {{\left( {3 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
CD = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
DA = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
AC = \[\sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( {3 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 4} \]
\[ \Rightarrow \sqrt 4 = 2\]
BD = \[\sqrt {{{\left( {1 - 7} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
Here AB=CD, BC=DA. But AC \[ \ne \] BD
Hence the pairs of opposite sides are equal but diagonal are not equal. So, it is a parallelogram.
Note: We can solve these types of questions with the help of distance formula. Once distance between all the points are calculated we can verify the shape using inner diagonals and outer sides like if all sides and both diagonals are equal that means it is a square.
Formula used:
Distance between the two points = \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] i.e. Distance Formula.
Complete step-by-step answer:
(i) The points given in question are \[A = \left( { - 1, - 2} \right)\] , \[B = \left( {1,0} \right)\] , \[C = \left( { - 1,2} \right)\] , and \[D = \left( { - 3,0} \right)\;\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
BC = \[\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {2 + 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
CD = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 1 + 3} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
AC = \[\sqrt {{{\left( { - 1 + 1} \right)}^2} + {{\left( { - 2 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 16} \]
\[ \Rightarrow \sqrt {16} = \sqrt 4 \]
BD = \[\sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 0 \right)}^2}} \]
\[ \Rightarrow \sqrt {16 + 0} \]
\[ \Rightarrow \sqrt {16} = 4\]
As, all the four sides that are AB, BC, CD and DA are equal and the diagonals AC and BD are equal.
Hence, Quadrilateral ABCD is a square.
(ii) The points given in question are \[A = \left( { - 3,5} \right)\] , \[B = \left( {3,1} \right)\] , \[C = \left( {0,3} \right)\] , and \[D = \left( { - 1, - 4} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {3 + 3} \right)}^2} + {{\left( {1 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
BC = \[\sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {3 - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 4} \]
\[ \Rightarrow \sqrt {13} \]
CD = \[\sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( { - 4 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}} \]
\[ \Rightarrow \sqrt {1 + 49} \]
\[ \Rightarrow \sqrt {50} = 5\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {5 + 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 9 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 81} \]
\[ \Rightarrow \sqrt {85} \]
Here \[AB \ne BC \ne CD \ne DA\]
Hence, It is just a quadrilateral.
(iii) The points given in question are \[A = \left( {4,5} \right)\] , \[B = \left( {7,6} \right)\] , \[C = \left( {4,3} \right)\;\] , and \[D = \left( {1,2} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {7 - 4} \right)}^2} + {{\left( {6 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 3 \right)}^2} + {{\left( 1 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
BC = \[\sqrt {{{\left( {4 - 7} \right)}^2} + {{\left( {3 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
CD = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
DA = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
AC = \[\sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( {3 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 4} \]
\[ \Rightarrow \sqrt 4 = 2\]
BD = \[\sqrt {{{\left( {1 - 7} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
Here AB=CD, BC=DA. But AC \[ \ne \] BD
Hence the pairs of opposite sides are equal but diagonal are not equal. So, it is a parallelogram.
Note: We can solve these types of questions with the help of distance formula. Once distance between all the points are calculated we can verify the shape using inner diagonals and outer sides like if all sides and both diagonals are equal that means it is a square.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

