
Name the type of quadrilateral formed, if any by the following points and give reasons for your answer.
(i)\[( - 1, - 2),(1,0),( - 1,2),( - 3,0)\]
(ii)\[( - 3,5),(3,1),(0,3),( - 1, - 4)\]
(iii)\[(4,5),(7,6),(4,3),(1,2)\]
Answer
573k+ views
Hint: Here we can use distance formula to calculate distance between the two points. After calculating all the distances required. So, that we can verify the shape of the quadrilateral formed using those specific points.
Formula used:
Distance between the two points = \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] i.e. Distance Formula.
Complete step-by-step answer:
(i) The points given in question are \[A = \left( { - 1, - 2} \right)\] , \[B = \left( {1,0} \right)\] , \[C = \left( { - 1,2} \right)\] , and \[D = \left( { - 3,0} \right)\;\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
BC = \[\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {2 + 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
CD = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 1 + 3} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
AC = \[\sqrt {{{\left( { - 1 + 1} \right)}^2} + {{\left( { - 2 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 16} \]
\[ \Rightarrow \sqrt {16} = \sqrt 4 \]
BD = \[\sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 0 \right)}^2}} \]
\[ \Rightarrow \sqrt {16 + 0} \]
\[ \Rightarrow \sqrt {16} = 4\]
As, all the four sides that are AB, BC, CD and DA are equal and the diagonals AC and BD are equal.
Hence, Quadrilateral ABCD is a square.
(ii) The points given in question are \[A = \left( { - 3,5} \right)\] , \[B = \left( {3,1} \right)\] , \[C = \left( {0,3} \right)\] , and \[D = \left( { - 1, - 4} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {3 + 3} \right)}^2} + {{\left( {1 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
BC = \[\sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {3 - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 4} \]
\[ \Rightarrow \sqrt {13} \]
CD = \[\sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( { - 4 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}} \]
\[ \Rightarrow \sqrt {1 + 49} \]
\[ \Rightarrow \sqrt {50} = 5\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {5 + 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 9 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 81} \]
\[ \Rightarrow \sqrt {85} \]
Here \[AB \ne BC \ne CD \ne DA\]
Hence, It is just a quadrilateral.
(iii) The points given in question are \[A = \left( {4,5} \right)\] , \[B = \left( {7,6} \right)\] , \[C = \left( {4,3} \right)\;\] , and \[D = \left( {1,2} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {7 - 4} \right)}^2} + {{\left( {6 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 3 \right)}^2} + {{\left( 1 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
BC = \[\sqrt {{{\left( {4 - 7} \right)}^2} + {{\left( {3 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
CD = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
DA = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
AC = \[\sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( {3 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 4} \]
\[ \Rightarrow \sqrt 4 = 2\]
BD = \[\sqrt {{{\left( {1 - 7} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
Here AB=CD, BC=DA. But AC \[ \ne \] BD
Hence the pairs of opposite sides are equal but diagonal are not equal. So, it is a parallelogram.
Note: We can solve these types of questions with the help of distance formula. Once distance between all the points are calculated we can verify the shape using inner diagonals and outer sides like if all sides and both diagonals are equal that means it is a square.
Formula used:
Distance between the two points = \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] i.e. Distance Formula.
Complete step-by-step answer:
(i) The points given in question are \[A = \left( { - 1, - 2} \right)\] , \[B = \left( {1,0} \right)\] , \[C = \left( { - 1,2} \right)\] , and \[D = \left( { - 3,0} \right)\;\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
BC = \[\sqrt {{{\left( { - 1 - 1} \right)}^2} + {{\left( {2 + 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
CD = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {0 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 1 + 3} \right)}^2} + {{\left( {0 + 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 2 \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 4} \]
\[ \Rightarrow \sqrt 8 = 2\sqrt 2 \]
AC = \[\sqrt {{{\left( { - 1 + 1} \right)}^2} + {{\left( { - 2 - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 16} \]
\[ \Rightarrow \sqrt {16} = \sqrt 4 \]
BD = \[\sqrt {{{\left( { - 3 - 1} \right)}^2} + {{\left( {0 - 0} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 4} \right)}^2} + {{\left( 0 \right)}^2}} \]
\[ \Rightarrow \sqrt {16 + 0} \]
\[ \Rightarrow \sqrt {16} = 4\]
As, all the four sides that are AB, BC, CD and DA are equal and the diagonals AC and BD are equal.
Hence, Quadrilateral ABCD is a square.
(ii) The points given in question are \[A = \left( { - 3,5} \right)\] , \[B = \left( {3,1} \right)\] , \[C = \left( {0,3} \right)\] , and \[D = \left( { - 1, - 4} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {3 + 3} \right)}^2} + {{\left( {1 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 6 \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
BC = \[\sqrt {{{\left( {0 - 3} \right)}^2} + {{\left( {3 - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( 2 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 4} \]
\[ \Rightarrow \sqrt {13} \]
CD = \[\sqrt {{{\left( { - 1 - 0} \right)}^2} + {{\left( { - 4 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 7} \right)}^2}} \]
\[ \Rightarrow \sqrt {1 + 49} \]
\[ \Rightarrow \sqrt {50} = 5\sqrt 2 \]
DA = \[\sqrt {{{\left( { - 3 + 1} \right)}^2} + {{\left( {5 + 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 2} \right)}^2} + {{\left( 9 \right)}^2}} \]
\[ \Rightarrow \sqrt {4 + 81} \]
\[ \Rightarrow \sqrt {85} \]
Here \[AB \ne BC \ne CD \ne DA\]
Hence, It is just a quadrilateral.
(iii) The points given in question are \[A = \left( {4,5} \right)\] , \[B = \left( {7,6} \right)\] , \[C = \left( {4,3} \right)\;\] , and \[D = \left( {1,2} \right)\] Then,
Distance between two points can be calculate by formula \[\sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} \] .
AB = \[\sqrt {{{\left( {7 - 4} \right)}^2} + {{\left( {6 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 3 \right)}^2} + {{\left( 1 \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
BC = \[\sqrt {{{\left( {4 - 7} \right)}^2} + {{\left( {3 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
CD = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 1} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 1} \]
\[ \Rightarrow \sqrt {10} \]
DA = \[\sqrt {{{\left( {1 - 4} \right)}^2} + {{\left( {2 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 3} \right)}^2} + {{\left( { - 3} \right)}^2}} \]
\[ \Rightarrow \sqrt {9 + 9} \]
\[ \Rightarrow \sqrt {18} = 3\sqrt 2 \]
AC = \[\sqrt {{{\left( {4 - 4} \right)}^2} + {{\left( {3 - 5} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( 0 \right)}^2} + {{\left( { - 2} \right)}^2}} \]
\[ \Rightarrow \sqrt {0 + 4} \]
\[ \Rightarrow \sqrt 4 = 2\]
BD = \[\sqrt {{{\left( {1 - 7} \right)}^2} + {{\left( {2 - 6} \right)}^2}} \]
\[ \Rightarrow \sqrt {{{\left( { - 6} \right)}^2} + {{\left( { - 4} \right)}^2}} \]
\[ \Rightarrow \sqrt {36 + 16} \]
\[ \Rightarrow \sqrt {52} = 2\sqrt {13} \]
Here AB=CD, BC=DA. But AC \[ \ne \] BD
Hence the pairs of opposite sides are equal but diagonal are not equal. So, it is a parallelogram.
Note: We can solve these types of questions with the help of distance formula. Once distance between all the points are calculated we can verify the shape using inner diagonals and outer sides like if all sides and both diagonals are equal that means it is a square.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

