Answer
Verified
447.3k+ views
Hint:In this question we have to multiply the binomials. The given binomials are \[(2x + 5)\] and \[(4x - 3)\].
We can find the product of two binomial expressions on the form, it can be multiplied by the first term of the first expression with the second expression. Then we will continue the multiplication with the second term.
In general the format of multiplying two polynomial \[(ax + b)(cx + d) = ac{x^2} + (ad + bc)x + bd\]
Complete step-by-step answer:
It is given that the two binomial expression are \[(2x + 5)\] and \[(4x - 3)\]
We have to find the multiplication of \[(2x + 5)\] and \[(4x - 3)\].
In the given expression we can write the form of multiplication, we get
\[(2x + 5) \times (4x - 3)\]
We will multiply the first term of the first expression with the first term of the second expression and again multiply the first term of the first expression with the second term of the second expression. Similarly for the second term of the first expression. That is, multiply the second term of the first expression with the first term of the second expression and then multiply the second term of the first expression with the second term of the second expression.
\[(8{x^2} - 6x + 20x - 15)\]
On simplifying the expression we get,
\[2x(4x - 3) + 5(4x - 3)\]
On simplifying, we can write the expression as the coefficient of ${x^2}$ and $x$ we get another equation,
\[8{x^2} - 6x + 20x - 15\]
Subtracting the coefficients of $x$, we get
\[8{x^2} + 14x - 15\]
Hence, the multiplication of two binomial expressions are \[(2x + 5)\] and \[(4x - 3)\] is \[8{x^2} + 14x - 15\].
$\therefore $ The product of two binomial expressions is \[(2x + 5) \times (4x - 3) = 8{x^2} + 14x - 15\]
Note:A polynomial with highest degree two is known as the binomial. \[a{x^2} + bx + c\]is the general form of a binomial where, \[a \ne 0\].
Here, we have two expressions of degree one. Multiplication of two one-degree polynomials gives the binomial as the answer.
We can find the product of two binomial expressions on the form, it can be multiplied by the first term of the first expression with the second expression. Then we will continue the multiplication with the second term.
In general the format of multiplying two polynomial \[(ax + b)(cx + d) = ac{x^2} + (ad + bc)x + bd\]
Complete step-by-step answer:
It is given that the two binomial expression are \[(2x + 5)\] and \[(4x - 3)\]
We have to find the multiplication of \[(2x + 5)\] and \[(4x - 3)\].
In the given expression we can write the form of multiplication, we get
\[(2x + 5) \times (4x - 3)\]
We will multiply the first term of the first expression with the first term of the second expression and again multiply the first term of the first expression with the second term of the second expression. Similarly for the second term of the first expression. That is, multiply the second term of the first expression with the first term of the second expression and then multiply the second term of the first expression with the second term of the second expression.
\[(8{x^2} - 6x + 20x - 15)\]
On simplifying the expression we get,
\[2x(4x - 3) + 5(4x - 3)\]
On simplifying, we can write the expression as the coefficient of ${x^2}$ and $x$ we get another equation,
\[8{x^2} - 6x + 20x - 15\]
Subtracting the coefficients of $x$, we get
\[8{x^2} + 14x - 15\]
Hence, the multiplication of two binomial expressions are \[(2x + 5)\] and \[(4x - 3)\] is \[8{x^2} + 14x - 15\].
$\therefore $ The product of two binomial expressions is \[(2x + 5) \times (4x - 3) = 8{x^2} + 14x - 15\]
Note:A polynomial with highest degree two is known as the binomial. \[a{x^2} + bx + c\]is the general form of a binomial where, \[a \ne 0\].
Here, we have two expressions of degree one. Multiplication of two one-degree polynomials gives the binomial as the answer.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Change the following sentences into negative and interrogative class 10 english CBSE
Casparian strips are present in of the root A Epiblema class 12 biology CBSE