
How do you multiply \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] with\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]?
Answer
548.4k+ views
Hint: In the given question, we have been asked to multiply the two given matrices. We need to know that when we multiply two given matrices then we have to observe the number of rows and columns of each of the given matrices because it will affect will resultant matrix and verify that the number of columns of first matrix must be equal to the number of rows of second matrix.
Formula used:
If \[A={{\left( {{a}_{ij}} \right)}_{m\times n}}\] and\[B={{\left( {{b}_{ij}} \right)}_{n\times p}}\], then\[A\times B=C\], where C is the matrix equals to,
\[C={{\left( {{c}_{ij}} \right)}_{m\times p}}\].
Complete step by step solution:
We have given that,
\[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\]\[\times \]\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]
If \[A={{\left( {{a}_{ij}} \right)}_{m\times n}}\] and\[B={{\left( {{b}_{ij}} \right)}_{n\times p}}\], then\[A\times B=C\], where C is the matrix equals to,
\[C={{\left( {{c}_{ij}} \right)}_{m\times p}}\].
Let the matrix A = \[{{\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)}_{2\times 2}}\]
Let the matrix B = \[{{\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)}_{2\times 4}}\]
Now, we can see that we have two matrices in which we have two rows and two columns in the first matrix and in the second matrix we have two rows and 4 columns.
So after multiplication we will get a matrix of 2 rows and 4 columns.
Now we will multiply them;
Let the multiplication \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\]\[\times \]\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\] gives \[\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} & {{a}_{14}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} & {{a}_{24}} \\
\end{matrix} \right)\]
Now, find each term,
\[\Rightarrow{{a}_{11}}=\left( -1\times -1 \right)+\left( 0\times 3 \right)=1+0=1\]
\[\Rightarrow {{a}_{12}}=\left( -1\times -3 \right)+\left( 0\times -1 \right)=3+0=3\]
\[\Rightarrow {{a}_{13}}=\left( -1\times -3 \right)+\left( 0\times -2 \right)=3+0=3\]
\[\Rightarrow {{a}_{14}}=\left( -1\times 2 \right)+\left( 0\times 1 \right)=-2+0=-2\]
\[\Rightarrow {{a}_{21}}=\left( 0\times -1 \right)+\left( 1\times 3 \right)=0+3=3\]
\[\Rightarrow {{a}_{22}}=\left( 0\times -3 \right)+\left( 1\times -1 \right)=0-1=-1\]
\[\Rightarrow {{a}_{23}}=\left( 0\times -3 \right)+\left( 1\times -2 \right)=0-2=-2\]
\[\Rightarrow {{a}_{24}}=\left( 0\times 2 \right)+\left( 1\times 1 \right)=0+1=1\]
Substitute these values,
We get a matrix;
\[\Rightarrow \left( \begin{matrix}
1 & 3 & 3 & -2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]
Thus,
\[\Rightarrow \left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\]\[\times \]\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]= \[\left( \begin{matrix}
1 & 3 & 3 & -2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]
Hence, multiply \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] with\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\] we will get\[\left( \begin{matrix}
1 & 3 & 3 & -2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\].
Note: Students need to remember that while doing multiplication of two matrices that one matrix number of columns must be equal to the second matrix number of rows only then we can further multiply the matrices otherwise not. Students should remember that If \[A={{\left( {{a}_{ij}} \right)}_{m\times n}}\] and\[B={{\left( {{b}_{ij}} \right)}_{n\times p}}\], then\[A\times B=C\], where C is the matrix equals to, \[C={{\left( {{c}_{ij}} \right)}_{m\times p}}\]. They need to know about the way to find the each term of matrices.
Formula used:
If \[A={{\left( {{a}_{ij}} \right)}_{m\times n}}\] and\[B={{\left( {{b}_{ij}} \right)}_{n\times p}}\], then\[A\times B=C\], where C is the matrix equals to,
\[C={{\left( {{c}_{ij}} \right)}_{m\times p}}\].
Complete step by step solution:
We have given that,
\[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\]\[\times \]\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]
If \[A={{\left( {{a}_{ij}} \right)}_{m\times n}}\] and\[B={{\left( {{b}_{ij}} \right)}_{n\times p}}\], then\[A\times B=C\], where C is the matrix equals to,
\[C={{\left( {{c}_{ij}} \right)}_{m\times p}}\].
Let the matrix A = \[{{\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)}_{2\times 2}}\]
Let the matrix B = \[{{\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)}_{2\times 4}}\]
Now, we can see that we have two matrices in which we have two rows and two columns in the first matrix and in the second matrix we have two rows and 4 columns.
So after multiplication we will get a matrix of 2 rows and 4 columns.
Now we will multiply them;
Let the multiplication \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\]\[\times \]\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\] gives \[\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} & {{a}_{14}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} & {{a}_{24}} \\
\end{matrix} \right)\]
Now, find each term,
\[\Rightarrow{{a}_{11}}=\left( -1\times -1 \right)+\left( 0\times 3 \right)=1+0=1\]
\[\Rightarrow {{a}_{12}}=\left( -1\times -3 \right)+\left( 0\times -1 \right)=3+0=3\]
\[\Rightarrow {{a}_{13}}=\left( -1\times -3 \right)+\left( 0\times -2 \right)=3+0=3\]
\[\Rightarrow {{a}_{14}}=\left( -1\times 2 \right)+\left( 0\times 1 \right)=-2+0=-2\]
\[\Rightarrow {{a}_{21}}=\left( 0\times -1 \right)+\left( 1\times 3 \right)=0+3=3\]
\[\Rightarrow {{a}_{22}}=\left( 0\times -3 \right)+\left( 1\times -1 \right)=0-1=-1\]
\[\Rightarrow {{a}_{23}}=\left( 0\times -3 \right)+\left( 1\times -2 \right)=0-2=-2\]
\[\Rightarrow {{a}_{24}}=\left( 0\times 2 \right)+\left( 1\times 1 \right)=0+1=1\]
Substitute these values,
We get a matrix;
\[\Rightarrow \left( \begin{matrix}
1 & 3 & 3 & -2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]
Thus,
\[\Rightarrow \left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\]\[\times \]\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]= \[\left( \begin{matrix}
1 & 3 & 3 & -2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\]
Hence, multiply \[\left( \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right)\] with\[\left( \begin{matrix}
-1 & -3 & -3 & 2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\] we will get\[\left( \begin{matrix}
1 & 3 & 3 & -2 \\
3 & -1 & -2 & 1 \\
\end{matrix} \right)\].
Note: Students need to remember that while doing multiplication of two matrices that one matrix number of columns must be equal to the second matrix number of rows only then we can further multiply the matrices otherwise not. Students should remember that If \[A={{\left( {{a}_{ij}} \right)}_{m\times n}}\] and\[B={{\left( {{b}_{ij}} \right)}_{n\times p}}\], then\[A\times B=C\], where C is the matrix equals to, \[C={{\left( {{c}_{ij}} \right)}_{m\times p}}\]. They need to know about the way to find the each term of matrices.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

