
How do you multiply \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] in trigonometric form?
Answer
549.9k+ views
Hint: This question belongs to the topic polar system of the chapter complex numbers. For solving this question, we should know about Euler’s identity. The Euler’s identity is \[{{e}^{ix}}=\cos x+i\sin x\]. And, also for solving this question, we should know some formulas like the following:
\[{{i}^{2}}=-1\]
\[{{e}^{a}}\times {{e}^{b}}={{e}^{a+b}}\].
Complete step by step answer:
Let us solve this question.
In this question, we have asked to find the value of \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] in trigonometric form.
Let us first find the value of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\] in trigonometric form separately.
To convert in trigonometric form, we will use the formula here is \[{{e}^{ix}}=\cos x+i\sin x\]
\[{{e}^{\dfrac{\pi }{2}i}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}\]
As we know that the value of \[\cos \dfrac{\pi }{2}\] is 0 and the value of \[\sin \dfrac{\pi }{2}\] is 1. So, we can write the above equation as
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}=0+i\times 1=i\]
Now, let us convert the second term.
\[{{e}^{3\dfrac{\pi }{2}i}}=\cos 3\dfrac{\pi }{2}+i\sin 3\dfrac{\pi }{2}\]
As we know that \[\cos \dfrac{3\pi }{2}=0\] and \[\sin \dfrac{3\pi }{2}=-1\]. So, after using these formulas in the above equation, we get
\[\Rightarrow {{e}^{3\dfrac{\pi }{2}i}}=0+i\times (-1)=-i\]
Now, we get that \[{{e}^{\dfrac{\pi }{2}i}}=i\] and \[{{e}^{3\dfrac{\pi }{2}i}}=-i\]. Here, \[i\] and \[-i\] are the trigonometric forms of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\] respectively.
So, we can find out the value of the term which is multiplication of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\] that is \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\].
Hence, \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i}}\times {{e}^{3\dfrac{\pi }{2}i}}\]
As we have find the values of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\], so we will put their values in the above equation, we get
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i}}\times {{e}^{3\dfrac{\pi }{2}i}}=i\times \left( -i \right)\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=-i\times i=-{{i}^{2}}\]
As we know that \[{{i}^{2}}=-1\], using this in the above equation, we get
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=-{{i}^{2}}=-(-1)\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=1\]
So, the trigonometric form of \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] is 1.
Note: At the time of solving this type of question, we should remember some value of trigonometric functions like sin, cos, etc. at angles \[\dfrac{\pi }{2}\], \[\pi \], \[\dfrac{3\pi }{2}\], and \[2\pi \].
\[\cos \dfrac{\pi }{2}=0\]; \[\sin \dfrac{\pi }{2}=1\]
\[\cos \pi =-1\]; \[\sin \pi =0\]
\[\cos \dfrac{3\pi }{2}=0\]; \[\sin \dfrac{3\pi }{2}=-1\]
\[\cos 2\pi =1=\cos 0\]; \[\sin 2\pi =0=\sin 0\]
Remember the above formulas to solve this type of question easily.
We can solve this question using an alternate method.
Using the formula \[{{e}^{a}}\times {{e}^{b}}={{e}^{a+b}}\], we can write \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] as
\[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i+3\dfrac{\pi }{2}i}}\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\left( 3+1 \right)\pi }{2}i}}={{e}^{\dfrac{4\pi }{2}i}}\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{2\pi i}}\]
Now, using the formula \[{{e}^{ix}}=\cos x+i\sin x\] in the above equation, we can write
\[\Rightarrow {{e}^{2\pi i}}=\cos 2\pi +i\sin 2\pi \]
As we know that \[\sin 2\pi =0\] and \[\cos 2\pi =1\]. So, the above equation can be written as
\[\Rightarrow {{e}^{2\pi i}}=1+i\times 0=1\]
Hence, we get the same value from this method too. So, one can use this method also.
\[{{i}^{2}}=-1\]
\[{{e}^{a}}\times {{e}^{b}}={{e}^{a+b}}\].
Complete step by step answer:
Let us solve this question.
In this question, we have asked to find the value of \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] in trigonometric form.
Let us first find the value of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\] in trigonometric form separately.
To convert in trigonometric form, we will use the formula here is \[{{e}^{ix}}=\cos x+i\sin x\]
\[{{e}^{\dfrac{\pi }{2}i}}=\cos \dfrac{\pi }{2}+i\sin \dfrac{\pi }{2}\]
As we know that the value of \[\cos \dfrac{\pi }{2}\] is 0 and the value of \[\sin \dfrac{\pi }{2}\] is 1. So, we can write the above equation as
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}=0+i\times 1=i\]
Now, let us convert the second term.
\[{{e}^{3\dfrac{\pi }{2}i}}=\cos 3\dfrac{\pi }{2}+i\sin 3\dfrac{\pi }{2}\]
As we know that \[\cos \dfrac{3\pi }{2}=0\] and \[\sin \dfrac{3\pi }{2}=-1\]. So, after using these formulas in the above equation, we get
\[\Rightarrow {{e}^{3\dfrac{\pi }{2}i}}=0+i\times (-1)=-i\]
Now, we get that \[{{e}^{\dfrac{\pi }{2}i}}=i\] and \[{{e}^{3\dfrac{\pi }{2}i}}=-i\]. Here, \[i\] and \[-i\] are the trigonometric forms of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\] respectively.
So, we can find out the value of the term which is multiplication of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\] that is \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\].
Hence, \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i}}\times {{e}^{3\dfrac{\pi }{2}i}}\]
As we have find the values of \[{{e}^{\dfrac{\pi }{2}i}}\] and \[{{e}^{3\dfrac{\pi }{2}i}}\], so we will put their values in the above equation, we get
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i}}\times {{e}^{3\dfrac{\pi }{2}i}}=i\times \left( -i \right)\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=-i\times i=-{{i}^{2}}\]
As we know that \[{{i}^{2}}=-1\], using this in the above equation, we get
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=-{{i}^{2}}=-(-1)\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}=1\]
So, the trigonometric form of \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] is 1.
Note: At the time of solving this type of question, we should remember some value of trigonometric functions like sin, cos, etc. at angles \[\dfrac{\pi }{2}\], \[\pi \], \[\dfrac{3\pi }{2}\], and \[2\pi \].
\[\cos \dfrac{\pi }{2}=0\]; \[\sin \dfrac{\pi }{2}=1\]
\[\cos \pi =-1\]; \[\sin \pi =0\]
\[\cos \dfrac{3\pi }{2}=0\]; \[\sin \dfrac{3\pi }{2}=-1\]
\[\cos 2\pi =1=\cos 0\]; \[\sin 2\pi =0=\sin 0\]
Remember the above formulas to solve this type of question easily.
We can solve this question using an alternate method.
Using the formula \[{{e}^{a}}\times {{e}^{b}}={{e}^{a+b}}\], we can write \[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}\] as
\[{{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\pi }{2}i+3\dfrac{\pi }{2}i}}\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{\dfrac{\left( 3+1 \right)\pi }{2}i}}={{e}^{\dfrac{4\pi }{2}i}}\]
\[\Rightarrow {{e}^{\dfrac{\pi }{2}i}}.{{e}^{3\dfrac{\pi }{2}i}}={{e}^{2\pi i}}\]
Now, using the formula \[{{e}^{ix}}=\cos x+i\sin x\] in the above equation, we can write
\[\Rightarrow {{e}^{2\pi i}}=\cos 2\pi +i\sin 2\pi \]
As we know that \[\sin 2\pi =0\] and \[\cos 2\pi =1\]. So, the above equation can be written as
\[\Rightarrow {{e}^{2\pi i}}=1+i\times 0=1\]
Hence, we get the same value from this method too. So, one can use this method also.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

State the laws of reflection of light

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

