
How do you multiply complex numbers in trigonometry?
Answer
485.1k+ views
Hint: We first take two complex numbers with their principal arguments. We express them both in their exponential and trigonometric form. We also use the trigonometric formulas like \[\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right);\left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right)\].
Complete step by step answer:
We have ${{z}_{1}}$ and ${{z}_{2}}$ as two complex numbers with $\alpha ,\beta $ as their principal arguments. We know that $-\pi \le \alpha ,\beta \le \pi $. This range is for the argument of any complex number. We can express any arbitrary complex number as $z={{e}^{i\theta }}$. Here $\theta $ is the argument.
We also can express it as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
We denote ${{z}_{1}}={{e}^{i\alpha }}$ and ${{z}_{2}}={{e}^{i\beta }}$. We also know that $\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)$.
Now ${{z}_{1}}{{z}_{2}}={{e}^{i\alpha }}.{{e}^{i\alpha }}={{e}^{i\left( \alpha +\beta \right)}}$. We now express it in trigonometry.
${{z}_{1}}{{z}_{2}}=\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right)$.
We use formulas like
\[\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right) \\
\Rightarrow \left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right) \\ \]
Therefore,
\[\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \alpha \cos \beta +i\cos \alpha \sin \beta +i\sin \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\therefore \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \left( \alpha +\beta \right)+i\sin \left( \alpha +\beta \right) \]
The multiplication for complex numbers in trigonometry works as the summation of the arguments.
Note: Principal $\arg \left( {{z}_{1}}{{z}_{2}} \right)$ is given by $\alpha +\beta -2\pi $. The same thing can be done for condition of $\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)<-\pi $ by adding $2\pi $ to the argument if it goes less than $-\pi $ to keep it in the range. The complex form can also be represented as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Complete step by step answer:
We have ${{z}_{1}}$ and ${{z}_{2}}$ as two complex numbers with $\alpha ,\beta $ as their principal arguments. We know that $-\pi \le \alpha ,\beta \le \pi $. This range is for the argument of any complex number. We can express any arbitrary complex number as $z={{e}^{i\theta }}$. Here $\theta $ is the argument.
We also can express it as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
We denote ${{z}_{1}}={{e}^{i\alpha }}$ and ${{z}_{2}}={{e}^{i\beta }}$. We also know that $\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)$.
Now ${{z}_{1}}{{z}_{2}}={{e}^{i\alpha }}.{{e}^{i\alpha }}={{e}^{i\left( \alpha +\beta \right)}}$. We now express it in trigonometry.
${{z}_{1}}{{z}_{2}}=\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right)$.
We use formulas like
\[\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right) \\
\Rightarrow \left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right) \\ \]
Therefore,
\[\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \alpha \cos \beta +i\cos \alpha \sin \beta +i\sin \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\therefore \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \left( \alpha +\beta \right)+i\sin \left( \alpha +\beta \right) \]
The multiplication for complex numbers in trigonometry works as the summation of the arguments.
Note: Principal $\arg \left( {{z}_{1}}{{z}_{2}} \right)$ is given by $\alpha +\beta -2\pi $. The same thing can be done for condition of $\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)<-\pi $ by adding $2\pi $ to the argument if it goes less than $-\pi $ to keep it in the range. The complex form can also be represented as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

