
How do you multiply complex numbers in trigonometry?
Answer
499.5k+ views
Hint: We first take two complex numbers with their principal arguments. We express them both in their exponential and trigonometric form. We also use the trigonometric formulas like \[\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right);\left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right)\].
Complete step by step answer:
We have ${{z}_{1}}$ and ${{z}_{2}}$ as two complex numbers with $\alpha ,\beta $ as their principal arguments. We know that $-\pi \le \alpha ,\beta \le \pi $. This range is for the argument of any complex number. We can express any arbitrary complex number as $z={{e}^{i\theta }}$. Here $\theta $ is the argument.
We also can express it as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
We denote ${{z}_{1}}={{e}^{i\alpha }}$ and ${{z}_{2}}={{e}^{i\beta }}$. We also know that $\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)$.
Now ${{z}_{1}}{{z}_{2}}={{e}^{i\alpha }}.{{e}^{i\alpha }}={{e}^{i\left( \alpha +\beta \right)}}$. We now express it in trigonometry.
${{z}_{1}}{{z}_{2}}=\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right)$.
We use formulas like
\[\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right) \\
\Rightarrow \left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right) \\ \]
Therefore,
\[\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \alpha \cos \beta +i\cos \alpha \sin \beta +i\sin \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\therefore \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \left( \alpha +\beta \right)+i\sin \left( \alpha +\beta \right) \]
The multiplication for complex numbers in trigonometry works as the summation of the arguments.
Note: Principal $\arg \left( {{z}_{1}}{{z}_{2}} \right)$ is given by $\alpha +\beta -2\pi $. The same thing can be done for condition of $\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)<-\pi $ by adding $2\pi $ to the argument if it goes less than $-\pi $ to keep it in the range. The complex form can also be represented as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Complete step by step answer:
We have ${{z}_{1}}$ and ${{z}_{2}}$ as two complex numbers with $\alpha ,\beta $ as their principal arguments. We know that $-\pi \le \alpha ,\beta \le \pi $. This range is for the argument of any complex number. We can express any arbitrary complex number as $z={{e}^{i\theta }}$. Here $\theta $ is the argument.
We also can express it as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
We denote ${{z}_{1}}={{e}^{i\alpha }}$ and ${{z}_{2}}={{e}^{i\beta }}$. We also know that $\arg \left( {{z}_{1}}{{z}_{2}} \right)=\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)$.
Now ${{z}_{1}}{{z}_{2}}={{e}^{i\alpha }}.{{e}^{i\alpha }}={{e}^{i\left( \alpha +\beta \right)}}$. We now express it in trigonometry.
${{z}_{1}}{{z}_{2}}=\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right)$.
We use formulas like
\[\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)=\cos \left( \alpha +\beta \right) \\
\Rightarrow \left( \sin \alpha \cos \beta +\cos \alpha \sin \beta \right)=\sin \left( \alpha +\beta \right) \\ \]
Therefore,
\[\left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \alpha \cos \beta +i\cos \alpha \sin \beta +i\sin \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta +{{i}^{2}}\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\Rightarrow \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\left( \cos \alpha \cos \beta -\sin \alpha \sin \beta \right)+i\left( \cos \alpha \sin \beta +\sin \alpha \cos \beta \right) \\
\therefore \left( \cos \alpha +i\sin \alpha \right)\left( \cos \beta +i\sin \beta \right) =\cos \left( \alpha +\beta \right)+i\sin \left( \alpha +\beta \right) \]
The multiplication for complex numbers in trigonometry works as the summation of the arguments.
Note: Principal $\arg \left( {{z}_{1}}{{z}_{2}} \right)$ is given by $\alpha +\beta -2\pi $. The same thing can be done for condition of $\arg \left( {{z}_{1}} \right)+\arg \left( {{z}_{2}} \right)<-\pi $ by adding $2\pi $ to the argument if it goes less than $-\pi $ to keep it in the range. The complex form can also be represented as $z={{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

