
How many moles of cobalt (III) bromide are in $ 9.94{\text{ }}g $ ?
Answer
482.4k+ views
Hint: find out the molar mass of cobalt (III) bromide. The atomic weight of cobalt is $ 58.933{\text{ }}\dfrac{g}{{mol}} $ and the atomic weight of bromine is $ 79.904{\text{ }}\dfrac{g}{{mol}} $ . To find the number of moles use the formula: $ Moles = Mass \times \dfrac{{1{\text{ }}mol}}{{molar{\text{ }}mass}} $ , where mass is given in the question and molar mass you will have to calculate.
Complete Step By Step Answer:
The chemical formula for cobalt (III) chloride is $ CoB{r_3} $ . The question asks us to find out the number of moles of cobalt (III) bromide. First, we need to find the molar mass of cobalt(iii) bromide. The molar mass is determined by multiplying the subscript of each element by its atomic weight on the periodic table.
For finding out the molar mass of the compound:
(Atomic weight of cobalt is $ 58.933{\text{ }}\dfrac{g}{{mol}} $ , atomic weight of bromine is $ 79.904{\text{ }}\dfrac{g}{{mol}} $ )
Molar mass of $ CoB{r_3} $ :
$ CoB{r_3} = (1 \times molar{\text{ }}mass{\text{ }}of{\text{ }}cobalt) + (3 \times molar{\text{ }}mass{\text{ }}of{\text{ }}bromine) $
$ \Rightarrow (1 \times 58.933{\text{ }}\dfrac{g}{{mol}}{\text{ }}Co) + (3 \times 79.904{\text{ }}\dfrac{g}{{mol}}Br) $
$ \Rightarrow 298.645{\text{ }}\dfrac{g}{{mol}} $
Therefore the molar mass of cobalt (III) bromide is $ 298.645\dfrac{g}{{mol}} $ .
Next, mass is already given in the question and we have found out the molar mass so we will now find out the number of moles of cobalt (III) bromide. For finding out the moles we will use the formula:
$ Moles = Mass \times \dfrac{{1{\text{ }}mol}}{{molar{\text{ }}mass}} $
The given mass is $ 9.94{\text{ }}g $ and the molar mass is $ 298.645\dfrac{g}{{mol}} $ . The molar mass that we have found out is in fraction and so we will devide the molar mass by multiplying its reciprocal with the mass given to us in the question. Thus by substituting we get:
$ Moles = 9.94{\text{ }}g \times \dfrac{{1{\text{ }}mol{\text{ }}CoB{r_3}}}{{298.645}} $
$ \Rightarrow 0.0333{\text{ }}mol{\text{ }}CoB{r_3} $
Therefore the number of moles in cobalt (III) bromide in $ 9.94{\text{ }}g $ is $ 0.0333{\text{ }}mol{\text{ }} $ .
Note:
A mole is defined as the mass of the substance which consists of the equal quantity of basic units. The basic units can be molecules, atoms or formula units based on the substance. One mole of any substance is equal to the value of $ 6.023 \times {10^{23}}\; $ (Avagadro number).
Complete Step By Step Answer:
The chemical formula for cobalt (III) chloride is $ CoB{r_3} $ . The question asks us to find out the number of moles of cobalt (III) bromide. First, we need to find the molar mass of cobalt(iii) bromide. The molar mass is determined by multiplying the subscript of each element by its atomic weight on the periodic table.
For finding out the molar mass of the compound:
(Atomic weight of cobalt is $ 58.933{\text{ }}\dfrac{g}{{mol}} $ , atomic weight of bromine is $ 79.904{\text{ }}\dfrac{g}{{mol}} $ )
Molar mass of $ CoB{r_3} $ :
$ CoB{r_3} = (1 \times molar{\text{ }}mass{\text{ }}of{\text{ }}cobalt) + (3 \times molar{\text{ }}mass{\text{ }}of{\text{ }}bromine) $
$ \Rightarrow (1 \times 58.933{\text{ }}\dfrac{g}{{mol}}{\text{ }}Co) + (3 \times 79.904{\text{ }}\dfrac{g}{{mol}}Br) $
$ \Rightarrow 298.645{\text{ }}\dfrac{g}{{mol}} $
Therefore the molar mass of cobalt (III) bromide is $ 298.645\dfrac{g}{{mol}} $ .
Next, mass is already given in the question and we have found out the molar mass so we will now find out the number of moles of cobalt (III) bromide. For finding out the moles we will use the formula:
$ Moles = Mass \times \dfrac{{1{\text{ }}mol}}{{molar{\text{ }}mass}} $
The given mass is $ 9.94{\text{ }}g $ and the molar mass is $ 298.645\dfrac{g}{{mol}} $ . The molar mass that we have found out is in fraction and so we will devide the molar mass by multiplying its reciprocal with the mass given to us in the question. Thus by substituting we get:
$ Moles = 9.94{\text{ }}g \times \dfrac{{1{\text{ }}mol{\text{ }}CoB{r_3}}}{{298.645}} $
$ \Rightarrow 0.0333{\text{ }}mol{\text{ }}CoB{r_3} $
Therefore the number of moles in cobalt (III) bromide in $ 9.94{\text{ }}g $ is $ 0.0333{\text{ }}mol{\text{ }} $ .
Note:
A mole is defined as the mass of the substance which consists of the equal quantity of basic units. The basic units can be molecules, atoms or formula units based on the substance. One mole of any substance is equal to the value of $ 6.023 \times {10^{23}}\; $ (Avagadro number).
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

