
Molarity and molality of the given solution are $4$ molar and $5$molal respectively. The molecular weight of the solute is$100$.
The density of the given solution is
A. $1$ gm/ml
B. $1.2$ gm/ml
C. $10/12$gm/ml
D. $0.80$ gm/ml
Answer
549.9k+ views
Hint: To determine the answer we should use the formulas of molarity, molality and density. First we will determine the relation among all three. Then by substituting the given values we can determine the density.
Complete solution:The formulas of molarity, molality and density are as follows:
${\text{molarity}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}}}$......$(1)$
${\text{molality}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{kg}}\,{\text{of}}\,{\text{solvent}}}}$....$(2)$
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solution (kg)}}}}{{{\text{volume of}}\,{\text{solution(L)}}}}$....$(3)$
On rearranging the equation $(1)$for volume of solution,
${\text{volume}}\,{\text{of}}\,{\text{solution}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{molarity}}}}$.....$(4)$
On substituting the volume from equation $(4)$into $(3)$,
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solution(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$
Mass of solution is the sum of mass of solvent and mass of solute so,
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solute(kg)}}\,{\text{ + }}\,{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$
On opening the equation we get,
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solute(kg)}}\,}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} + \dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$
As we know that we take molar mass of a compound (solute) in g/mole, so, we have to replace the mass of solute from kilogram to gram.
We know, ${\text{1}}\,{\text{kg}}\,{\text{ = }}\,{\text{1000}}\,{\text{g}}$
So,
\[{\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solute(g)}}\,}}{{{\text{1000}} \times {\text{moles}}\,{\text{of}}\,{\text{solute}}}} + \dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}\].....$(5)$
We know the mole is determined by dividing the mass (g) by molar mass (g/mol).
${\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{molar}}\,{\text{mass}}}}$
On rearranging the above formula for molar mass we get,
${\text{molar}}\,{\text{mass}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{mole}}}}$…..$(6)$
On substituting the molar mass from equation $(6)$ to$(5)$ we get,
${\text{d = }}\dfrac{{{\text{molar}}\,{\text{mass}}\,{\text{of}}\,{\text{solute}}\,}}{{{\text{1000}}}} + \dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$.....$(7)$
On inverting the equation $(2)$ we get,
$\dfrac{{\text{1}}}{{{\text{molality}}}}\,\,{\text{ = }}\,\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}$.....${\text{(8)}}$
On substituting from equation ${\text{(8)}}$into equation${\text{(7)}}$,
${\text{d = }}\,\left( {\dfrac{{{\text{molar}}\,{\text{mass}}\,{\text{of}}\,{\text{solute}}\,}}{{{\text{1000}}}} + \dfrac{{\text{1}}}{{{\text{molality}}\,}}} \right) \times {\text{molarity}}$....${\text{(9)}}$
So, the equation ${\text{(9)}}$ gives the relation in molarity, molality and density.
On substituting $4$for molarity , $5$ for molality and $100$for molecular mass,
${\text{d = }}\,\left( {\dfrac{{100\,}}{{{\text{1000}}}} + \dfrac{{\text{1}}}{{5\,}}} \right) \times {\text{4}}$
${\text{d = }}\,\left( {0.1 + 0.2} \right) \times {\text{4}}$
${\text{d = }}\,1.2$
So, the density of the given solution is $1.2$gm/ml.
Therefore, option (B) is correct.
Note:Molarity is defined as the mole of solute dissolved in per litter of the solution and molality is defined as the mole of solute dissolved in per kg of the solvent. Density is defined as the mass of solution present in a volume of solution. Units are very important to determine the correct answer. Unit of molarity is mol/L and the unit of molality is mol/kg. The unit of density is g/ml or kg/L.
Complete solution:The formulas of molarity, molality and density are as follows:
${\text{molarity}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}}}$......$(1)$
${\text{molality}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{kg}}\,{\text{of}}\,{\text{solvent}}}}$....$(2)$
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solution (kg)}}}}{{{\text{volume of}}\,{\text{solution(L)}}}}$....$(3)$
On rearranging the equation $(1)$for volume of solution,
${\text{volume}}\,{\text{of}}\,{\text{solution}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{molarity}}}}$.....$(4)$
On substituting the volume from equation $(4)$into $(3)$,
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solution(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$
Mass of solution is the sum of mass of solvent and mass of solute so,
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solute(kg)}}\,{\text{ + }}\,{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$
On opening the equation we get,
${\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solute(kg)}}\,}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} + \dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$
As we know that we take molar mass of a compound (solute) in g/mole, so, we have to replace the mass of solute from kilogram to gram.
We know, ${\text{1}}\,{\text{kg}}\,{\text{ = }}\,{\text{1000}}\,{\text{g}}$
So,
\[{\text{d = }}\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solute(g)}}\,}}{{{\text{1000}} \times {\text{moles}}\,{\text{of}}\,{\text{solute}}}} + \dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}\].....$(5)$
We know the mole is determined by dividing the mass (g) by molar mass (g/mol).
${\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{molar}}\,{\text{mass}}}}$
On rearranging the above formula for molar mass we get,
${\text{molar}}\,{\text{mass}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{mole}}}}$…..$(6)$
On substituting the molar mass from equation $(6)$ to$(5)$ we get,
${\text{d = }}\dfrac{{{\text{molar}}\,{\text{mass}}\,{\text{of}}\,{\text{solute}}\,}}{{{\text{1000}}}} + \dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}} \times {\text{molarity}}$.....$(7)$
On inverting the equation $(2)$ we get,
$\dfrac{{\text{1}}}{{{\text{molality}}}}\,\,{\text{ = }}\,\dfrac{{{\text{mass}}\,\,{\text{of}}\,{\text{solvent(kg)}}}}{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}$.....${\text{(8)}}$
On substituting from equation ${\text{(8)}}$into equation${\text{(7)}}$,
${\text{d = }}\,\left( {\dfrac{{{\text{molar}}\,{\text{mass}}\,{\text{of}}\,{\text{solute}}\,}}{{{\text{1000}}}} + \dfrac{{\text{1}}}{{{\text{molality}}\,}}} \right) \times {\text{molarity}}$....${\text{(9)}}$
So, the equation ${\text{(9)}}$ gives the relation in molarity, molality and density.
On substituting $4$for molarity , $5$ for molality and $100$for molecular mass,
${\text{d = }}\,\left( {\dfrac{{100\,}}{{{\text{1000}}}} + \dfrac{{\text{1}}}{{5\,}}} \right) \times {\text{4}}$
${\text{d = }}\,\left( {0.1 + 0.2} \right) \times {\text{4}}$
${\text{d = }}\,1.2$
So, the density of the given solution is $1.2$gm/ml.
Therefore, option (B) is correct.
Note:Molarity is defined as the mole of solute dissolved in per litter of the solution and molality is defined as the mole of solute dissolved in per kg of the solvent. Density is defined as the mass of solution present in a volume of solution. Units are very important to determine the correct answer. Unit of molarity is mol/L and the unit of molality is mol/kg. The unit of density is g/ml or kg/L.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

