Answer
Verified
454.5k+ views
Hint: We will find the efficiency of Mohan and Bhanu by using the time they require to complete the work. Then we know that they have decided to work together. So their efficiencies to complete the work will add up. We will use the value of this added efficiency to find the time required by them to complete the work together.
Complete step-by-step solution
Let us denote the work of fixing bulbs on a stretch of road by W. Let us describe a formula to calculate the efficiency of a person for doing a certain quantity of work in the following manner,
$\text{Efficiency of a person = }\dfrac{\text{total work done}}{\text{time taken to do the total work}}$
Now, we know that Mohan takes 8 hours to complete the W quantity of work. We will calculate the efficiency of Mohan using the formula described above, as follows
$\text{Efficiency of Mohan =}\dfrac{\text{W}}{8}$
Next, we know that Bhanu takes 10 hours to complete work W. So using the efficiency formula again, we will calculate the efficiency of Bhanu. We will get
$\text{Efficiency of Bhanu = }\dfrac{\text{W}}{10}$
Mohan and Bhanu have decided to work together. So, their efficiency will be added. Let us denote this added efficiency by E. So we have the following,
$\text{E = }\dfrac{\text{W}}{8}+\dfrac{\text{W}}{10}=\dfrac{5\text{W+4W}}{40}=\dfrac{9}{40}\text{W}$
Now, we have to find the time taken by both of them while working together to finish work W with efficiency E. Substituting these values in the formula for efficiency, we get
$\text{E=}\dfrac{\text{W}}{\text{time taken to do work W}}$
Rearranging the above equation and substituting the value of E, we get
\[\text{Time taken to do work W =}\dfrac{\text{W}}{\left( \dfrac{9}{40}\text{W} \right)}\]
Simplifying the above equation, we have
\[\text{Time taken to do work W =}\dfrac{40}{9}\text{ hrs}\]
Hence, the time required by both of them working together to complete work W is $\dfrac{40}{9}$ hours.
Note: It is important to understand the relationship between work done, the time required to do the work, and the efficiency. Describing the formula in clear words makes the relations between the work, efficiency, and time easy to understand. We should be careful while doing the calculations to avoid making minor errors.
Complete step-by-step solution
Let us denote the work of fixing bulbs on a stretch of road by W. Let us describe a formula to calculate the efficiency of a person for doing a certain quantity of work in the following manner,
$\text{Efficiency of a person = }\dfrac{\text{total work done}}{\text{time taken to do the total work}}$
Now, we know that Mohan takes 8 hours to complete the W quantity of work. We will calculate the efficiency of Mohan using the formula described above, as follows
$\text{Efficiency of Mohan =}\dfrac{\text{W}}{8}$
Next, we know that Bhanu takes 10 hours to complete work W. So using the efficiency formula again, we will calculate the efficiency of Bhanu. We will get
$\text{Efficiency of Bhanu = }\dfrac{\text{W}}{10}$
Mohan and Bhanu have decided to work together. So, their efficiency will be added. Let us denote this added efficiency by E. So we have the following,
$\text{E = }\dfrac{\text{W}}{8}+\dfrac{\text{W}}{10}=\dfrac{5\text{W+4W}}{40}=\dfrac{9}{40}\text{W}$
Now, we have to find the time taken by both of them while working together to finish work W with efficiency E. Substituting these values in the formula for efficiency, we get
$\text{E=}\dfrac{\text{W}}{\text{time taken to do work W}}$
Rearranging the above equation and substituting the value of E, we get
\[\text{Time taken to do work W =}\dfrac{\text{W}}{\left( \dfrac{9}{40}\text{W} \right)}\]
Simplifying the above equation, we have
\[\text{Time taken to do work W =}\dfrac{40}{9}\text{ hrs}\]
Hence, the time required by both of them working together to complete work W is $\dfrac{40}{9}$ hours.
Note: It is important to understand the relationship between work done, the time required to do the work, and the efficiency. Describing the formula in clear words makes the relations between the work, efficiency, and time easy to understand. We should be careful while doing the calculations to avoid making minor errors.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE