
Modulus of elasticity is dimensionally equivalent to:
A. Stress
B. Surface tension
C. Strain
D. Coefficient of viscosity.
Answer
511.2k+ views
Hint: The dimension of a physical quantity may be defined as the number of times the fundamental units of mass, length, time, temperature, electric current, luminous intensity and moles appear in the physical quantity.
Complete step by step solution:
$Y = \dfrac{{Stress}}{{Strain}} = \dfrac{{F/A}}{{\Delta l/l}} = \dfrac{{F \times l}}{{A \times \Delta l}}$
Putting the dimensions of the physical quantities
$\therefore $Dimension of$Y = \dfrac{{ML{T^{ - 2}} \times L}}{{{L^2} \times L}}$
$ = M{L^{ - 1}}{T^{ - 2}}$
Now from option –
(a) Stress$ = \dfrac{{Force}}{{area}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
(b) Surface tension$ = \dfrac{{Force}}{{length}}$
$ = \dfrac{{ML{T^{ - 2}}}}{L} = M{T^{ - 2}}$
(c) Strain$ = \dfrac{{Change{\text{ in length}}}}{{Original{\text{ length}}}}$
$ = \dfrac{L}{L} = 1 = M^\circ L^\circ T^\circ $
(d) $F = 6\pi \eta ru$
$6\pi \to $ is dimensionless
So, dimension of $\eta $
$ = \dfrac{F}{{ru}} = \dfrac{{ML{T^{ - 2}}}}{{L \times L{T^{ - 1}}}}$
$ = M{L^{ - 1}}{T^{ - 1}}$
So option (a) is correct.
Additional information:
1. Dimension of force is$\left[ {ML{T^{ - 2}}} \right]$
2. Dimension of length type physical quantities is$\left[ L \right]$
3. Dimension area is$\left[ {{L^2}} \right]$
4. Dimension of velocity is$\left[ {L{T^{ - 1}}} \right]$
Note: The numerical values such as $2,3,5\pi $, etc. used in equations has no dimensions.
Complete step by step solution:
$Y = \dfrac{{Stress}}{{Strain}} = \dfrac{{F/A}}{{\Delta l/l}} = \dfrac{{F \times l}}{{A \times \Delta l}}$
Putting the dimensions of the physical quantities
$\therefore $Dimension of$Y = \dfrac{{ML{T^{ - 2}} \times L}}{{{L^2} \times L}}$
$ = M{L^{ - 1}}{T^{ - 2}}$
Now from option –
(a) Stress$ = \dfrac{{Force}}{{area}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
(b) Surface tension$ = \dfrac{{Force}}{{length}}$
$ = \dfrac{{ML{T^{ - 2}}}}{L} = M{T^{ - 2}}$
(c) Strain$ = \dfrac{{Change{\text{ in length}}}}{{Original{\text{ length}}}}$
$ = \dfrac{L}{L} = 1 = M^\circ L^\circ T^\circ $
(d) $F = 6\pi \eta ru$
$6\pi \to $ is dimensionless
So, dimension of $\eta $
$ = \dfrac{F}{{ru}} = \dfrac{{ML{T^{ - 2}}}}{{L \times L{T^{ - 1}}}}$
$ = M{L^{ - 1}}{T^{ - 1}}$
So option (a) is correct.
Additional information:
1. Dimension of force is$\left[ {ML{T^{ - 2}}} \right]$
2. Dimension of length type physical quantities is$\left[ L \right]$
3. Dimension area is$\left[ {{L^2}} \right]$
4. Dimension of velocity is$\left[ {L{T^{ - 1}}} \right]$
Note: The numerical values such as $2,3,5\pi $, etc. used in equations has no dimensions.
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which of the following is nitrogenfixing algae a Nostoc class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
