
Modulus of elasticity is dimensionally equivalent to:
A. Stress
B. Surface tension
C. Strain
D. Coefficient of viscosity.
Answer
590.4k+ views
Hint: The dimension of a physical quantity may be defined as the number of times the fundamental units of mass, length, time, temperature, electric current, luminous intensity and moles appear in the physical quantity.
Complete step by step solution:
$Y = \dfrac{{Stress}}{{Strain}} = \dfrac{{F/A}}{{\Delta l/l}} = \dfrac{{F \times l}}{{A \times \Delta l}}$
Putting the dimensions of the physical quantities
$\therefore $Dimension of$Y = \dfrac{{ML{T^{ - 2}} \times L}}{{{L^2} \times L}}$
$ = M{L^{ - 1}}{T^{ - 2}}$
Now from option –
(a) Stress$ = \dfrac{{Force}}{{area}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
(b) Surface tension$ = \dfrac{{Force}}{{length}}$
$ = \dfrac{{ML{T^{ - 2}}}}{L} = M{T^{ - 2}}$
(c) Strain$ = \dfrac{{Change{\text{ in length}}}}{{Original{\text{ length}}}}$
$ = \dfrac{L}{L} = 1 = M^\circ L^\circ T^\circ $
(d) $F = 6\pi \eta ru$
$6\pi \to $ is dimensionless
So, dimension of $\eta $
$ = \dfrac{F}{{ru}} = \dfrac{{ML{T^{ - 2}}}}{{L \times L{T^{ - 1}}}}$
$ = M{L^{ - 1}}{T^{ - 1}}$
So option (a) is correct.
Additional information:
1. Dimension of force is$\left[ {ML{T^{ - 2}}} \right]$
2. Dimension of length type physical quantities is$\left[ L \right]$
3. Dimension area is$\left[ {{L^2}} \right]$
4. Dimension of velocity is$\left[ {L{T^{ - 1}}} \right]$
Note: The numerical values such as $2,3,5\pi $, etc. used in equations has no dimensions.
Complete step by step solution:
$Y = \dfrac{{Stress}}{{Strain}} = \dfrac{{F/A}}{{\Delta l/l}} = \dfrac{{F \times l}}{{A \times \Delta l}}$
Putting the dimensions of the physical quantities
$\therefore $Dimension of$Y = \dfrac{{ML{T^{ - 2}} \times L}}{{{L^2} \times L}}$
$ = M{L^{ - 1}}{T^{ - 2}}$
Now from option –
(a) Stress$ = \dfrac{{Force}}{{area}} = \dfrac{{ML{T^{ - 2}}}}{{{L^2}}} = M{L^{ - 1}}{T^{ - 2}}$
(b) Surface tension$ = \dfrac{{Force}}{{length}}$
$ = \dfrac{{ML{T^{ - 2}}}}{L} = M{T^{ - 2}}$
(c) Strain$ = \dfrac{{Change{\text{ in length}}}}{{Original{\text{ length}}}}$
$ = \dfrac{L}{L} = 1 = M^\circ L^\circ T^\circ $
(d) $F = 6\pi \eta ru$
$6\pi \to $ is dimensionless
So, dimension of $\eta $
$ = \dfrac{F}{{ru}} = \dfrac{{ML{T^{ - 2}}}}{{L \times L{T^{ - 1}}}}$
$ = M{L^{ - 1}}{T^{ - 1}}$
So option (a) is correct.
Additional information:
1. Dimension of force is$\left[ {ML{T^{ - 2}}} \right]$
2. Dimension of length type physical quantities is$\left[ L \right]$
3. Dimension area is$\left[ {{L^2}} \right]$
4. Dimension of velocity is$\left[ {L{T^{ - 1}}} \right]$
Note: The numerical values such as $2,3,5\pi $, etc. used in equations has no dimensions.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

