
What minimum should be added to $-\dfrac{7}{12}$ to get to the number $\dfrac{5}{9}$.
Answer
566.4k+ views
Hint: Here we use the variable. We assume a variable which is added to $-\dfrac{7}{12}$ to get $\dfrac{5}{9}$. We find the linear equation of the problem. We solve the equation by using binary operation to get the variable and the solution.
Complete step-by-step answer:
We need to find the minimum number that’s to be added to $-\dfrac{7}{12}$ to get to the number $\dfrac{5}{9}$.
Let’s assume the number is x.
When we add x to $-\dfrac{7}{12}$, we get $\dfrac{5}{9}$. We express the notion in the form of a linear equation of x.
So, $x+\left( -\dfrac{7}{12} \right)=\dfrac{5}{9}$. We got a linear equation of x.
Now we solve the equation to get the value of x.
The equation becomes $x-\dfrac{7}{12}=\dfrac{5}{9}$.
Solving we get
$\begin{align}
& x-\dfrac{7}{12}=\dfrac{5}{9} \\
& \Rightarrow x=\dfrac{5}{9}+\dfrac{7}{12} \\
\end{align}$
Now we need to get the L.C.M of 9 and 12 to solve for the value of x.
The L.C.M of 9 and 12 is $3\times 3\times 4=36$. Now we solve the equation.
$\begin{align}
& x=\dfrac{4\times 5+3\times 7}{36}=\dfrac{20+21}{36} \\
& \Rightarrow x=\dfrac{41}{36} \\
\end{align}$
So, we add $\dfrac{41}{36}$ to the number $-\dfrac{7}{12}$ to get to the number $\dfrac{5}{9}$.
Note: We can also directly use the addition of the two given numbers to find the solution. The variable part will not be required to find the solution. The word minimum is not required to change the solution. There can’t be any range of solution, as it is a single solution.
Complete step-by-step answer:
We need to find the minimum number that’s to be added to $-\dfrac{7}{12}$ to get to the number $\dfrac{5}{9}$.
Let’s assume the number is x.
When we add x to $-\dfrac{7}{12}$, we get $\dfrac{5}{9}$. We express the notion in the form of a linear equation of x.
So, $x+\left( -\dfrac{7}{12} \right)=\dfrac{5}{9}$. We got a linear equation of x.
Now we solve the equation to get the value of x.
The equation becomes $x-\dfrac{7}{12}=\dfrac{5}{9}$.
Solving we get
$\begin{align}
& x-\dfrac{7}{12}=\dfrac{5}{9} \\
& \Rightarrow x=\dfrac{5}{9}+\dfrac{7}{12} \\
\end{align}$
Now we need to get the L.C.M of 9 and 12 to solve for the value of x.
The L.C.M of 9 and 12 is $3\times 3\times 4=36$. Now we solve the equation.
$\begin{align}
& x=\dfrac{4\times 5+3\times 7}{36}=\dfrac{20+21}{36} \\
& \Rightarrow x=\dfrac{41}{36} \\
\end{align}$
So, we add $\dfrac{41}{36}$ to the number $-\dfrac{7}{12}$ to get to the number $\dfrac{5}{9}$.
Note: We can also directly use the addition of the two given numbers to find the solution. The variable part will not be required to find the solution. The word minimum is not required to change the solution. There can’t be any range of solution, as it is a single solution.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Convert 200 Million dollars in rupees class 7 maths CBSE

What are the controls affecting the climate of Ind class 7 social science CBSE

List of coprime numbers from 1 to 100 class 7 maths CBSE

Write a letter to the editor of the national daily class 7 english CBSE

Fill in the blanks with appropriate modals a Drivers class 7 english CBSE


