
How many milliliters of 0.230 M $\text{N}{{\text{a}}_{2}}\text{S}$ are needed to react with 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$ , according to the following balanced equation?
\[\text{N}{{\text{a}}_{\text{2}}}\text{S(aq)}+2\text{AgN}{{\text{O}}_{\text{3}}}\text{(aq)}\to 2\text{NaN}{{\text{O}}_{\text{3}}}\text{(aq)}+\text{A}{{\text{g}}_{\text{2}}}\text{S(s)}\]
Answer
534k+ views
Hint: By using the stoichiometry of the reaction, we can find out the number of moles of $\text{N}{{\text{a}}_{2}}\text{S}$ needed to react with 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$. The number of moles is related to volume as given below:
\[\text{Molarity (M)}=\dfrac{\text{number of moles (n)}}{\text{volume in litres (V)}}\]
Complete answer:
Stoichiometry of the chemical reactions is used to find the amount of reactant or product that is required or produced respectively with the help of their coefficient values in a balanced chemical equation.
According to the balanced chemical equation in the given question, 1 mole of $\text{N}{{\text{a}}_{2}}\text{S}$ is reacting with 2 moles of $\text{AgN}{{\text{O}}_{3}}$ to produce 2 moles of $\text{NaN}{{\text{O}}_{3}}$ and 1 mole of $\text{A}{{\text{g}}_{\text{2}}}\text{S}$.
\[\text{N}{{\text{a}}_{\text{2}}}\text{S(aq)}+2\text{AgN}{{\text{O}}_{\text{3}}}\text{(aq)}\to 2\text{NaN}{{\text{O}}_{\text{3}}}\text{(aq)}+\text{A}{{\text{g}}_{\text{2}}}\text{S(s)}\]
First, we need to find out the number of moles of $\text{N}{{\text{a}}_{2}}\text{S}$ and $\text{AgN}{{\text{O}}_{3}}$ by using this formula:
\[\text{Molarity (M)}=\dfrac{\text{number of moles (n)}}{\text{volume in litres (V)}}\]
We are given 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$.
\[\begin{align}
& \therefore 0.513\text{ mol }{{\text{L}}^{-1}}=\dfrac{{{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}}{0.0300\text{ L}} \\
& \Rightarrow {{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}=0.513\text{ mol }{{\text{L}}^{-1}}\times 0.0300\text{ L} \\
& \Rightarrow {{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}=0.01539\text{ mol} \\
\end{align}\]
Since 2 moles of $\text{AgN}{{\text{O}}_{3}}$ is reacting with 1 mole of $\text{N}{{\text{a}}_{2}}\text{S}$.
Therefore, 1 mole $\text{AgN}{{\text{O}}_{3}}$ will react with $\left( \dfrac{1}{2} \right)$ moles of $\text{N}{{\text{a}}_{2}}\text{S}$.
And, 0.01539 moles of $\text{AgN}{{\text{O}}_{3}}$ will react with $\left( \dfrac{1}{2}\times 0.01539 \right)$ i.e. 0.007695 moles of $\text{N}{{\text{a}}_{2}}\text{S}$.
So, now we need to find the volume (in mL) of 0.007695 moles of $\text{N}{{\text{a}}_{2}}\text{S}$ present in its 0.230 M solution.
\[\begin{align}
& 0.230\text{ mol }{{\text{L}}^{-1}}=\dfrac{0.007695\text{ mol}}{{{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}} \\
& \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=\dfrac{0.007695\text{ mol}}{0.230\text{ mol }{{\text{L}}^{-1}}} \\
& \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=0.03346\text{ L} \\
& \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=33.46\text{ mL} \\
\end{align}\]
Hence, 33.46 milliliters of 0.230 M $\text{N}{{\text{a}}_{2}}\text{S}$ are needed to react with 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$.
Note:
The chemical equation should always be balanced before performing the stoichiometric calculations and the number of molecules of reactant or products involved is expressed in terms of moles.
\[\text{Molarity (M)}=\dfrac{\text{number of moles (n)}}{\text{volume in litres (V)}}\]
Complete answer:
Stoichiometry of the chemical reactions is used to find the amount of reactant or product that is required or produced respectively with the help of their coefficient values in a balanced chemical equation.
According to the balanced chemical equation in the given question, 1 mole of $\text{N}{{\text{a}}_{2}}\text{S}$ is reacting with 2 moles of $\text{AgN}{{\text{O}}_{3}}$ to produce 2 moles of $\text{NaN}{{\text{O}}_{3}}$ and 1 mole of $\text{A}{{\text{g}}_{\text{2}}}\text{S}$.
\[\text{N}{{\text{a}}_{\text{2}}}\text{S(aq)}+2\text{AgN}{{\text{O}}_{\text{3}}}\text{(aq)}\to 2\text{NaN}{{\text{O}}_{\text{3}}}\text{(aq)}+\text{A}{{\text{g}}_{\text{2}}}\text{S(s)}\]
First, we need to find out the number of moles of $\text{N}{{\text{a}}_{2}}\text{S}$ and $\text{AgN}{{\text{O}}_{3}}$ by using this formula:
\[\text{Molarity (M)}=\dfrac{\text{number of moles (n)}}{\text{volume in litres (V)}}\]
We are given 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$.
\[\begin{align}
& \therefore 0.513\text{ mol }{{\text{L}}^{-1}}=\dfrac{{{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}}{0.0300\text{ L}} \\
& \Rightarrow {{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}=0.513\text{ mol }{{\text{L}}^{-1}}\times 0.0300\text{ L} \\
& \Rightarrow {{\text{n}}_{\text{AgN}{{\text{O}}_{\text{3}}}}}=0.01539\text{ mol} \\
\end{align}\]
Since 2 moles of $\text{AgN}{{\text{O}}_{3}}$ is reacting with 1 mole of $\text{N}{{\text{a}}_{2}}\text{S}$.
Therefore, 1 mole $\text{AgN}{{\text{O}}_{3}}$ will react with $\left( \dfrac{1}{2} \right)$ moles of $\text{N}{{\text{a}}_{2}}\text{S}$.
And, 0.01539 moles of $\text{AgN}{{\text{O}}_{3}}$ will react with $\left( \dfrac{1}{2}\times 0.01539 \right)$ i.e. 0.007695 moles of $\text{N}{{\text{a}}_{2}}\text{S}$.
So, now we need to find the volume (in mL) of 0.007695 moles of $\text{N}{{\text{a}}_{2}}\text{S}$ present in its 0.230 M solution.
\[\begin{align}
& 0.230\text{ mol }{{\text{L}}^{-1}}=\dfrac{0.007695\text{ mol}}{{{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}} \\
& \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=\dfrac{0.007695\text{ mol}}{0.230\text{ mol }{{\text{L}}^{-1}}} \\
& \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=0.03346\text{ L} \\
& \Rightarrow {{\text{V}}_{\text{N}{{\text{a}}_{\text{2}}}\text{S}}}=33.46\text{ mL} \\
\end{align}\]
Hence, 33.46 milliliters of 0.230 M $\text{N}{{\text{a}}_{2}}\text{S}$ are needed to react with 30.00 mL of 0.513 M $\text{AgN}{{\text{O}}_{3}}$.
Note:
The chemical equation should always be balanced before performing the stoichiometric calculations and the number of molecules of reactant or products involved is expressed in terms of moles.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

