
Midpoint of the line segment joining the points \[\left( { - 5,4} \right)\] and \[\left( {9, - 8} \right)\] is
A.\[\left( { - 7,6} \right)\]
B.\[\left( {2, - 2} \right)\]
C.\[\left( {7, - 6} \right)\]
D.\[\left( { - 2, - 2} \right)\]
Answer
562.8k+ views
Hint: Here, we will use the midpoint formula to find the midpoint of the segment. We will find the sum of the \[x\]- coordinates and \[y\]- coordinates of the two points separately. Then we will divide the obtained sums by 2. This will give us the \[x\]- coordinate (abscissa) and \[y\]- coordinate (ordinate) of the midpoint respectively.
Complete step-by-step answer:
If we have to find the midpoint of a line segment whose end coordinates are given, we can use the midpoint formula. If the end-points of the line segment are \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\]. Then the \[x\]- coordinate of the midpoint will be \[\dfrac{{{x_1} + {x_2}}}{2}\] and \[y\]- coordinate of the midpoint will be \[\dfrac{{{y_1} + {y_2}}}{2}\].
Now we will substitute \[ - 5\] for \[{x_1}\], 9 for \[{x_2}\], 4 for \[{y_1}\] and \[ - 8\] for \[{y_2}\] in the midpoint formula \[\dfrac{{{x_1} + {x_2}}}{2}\] and \[\dfrac{{{y_1} + {y_2}}}{2}\].
\[x = \dfrac{{ - 5 + 9}}{2} = 2\]
\[y = \dfrac{{4 - 8}}{2} = - 2\]
$\therefore $ The midpoint of the line segment is \[\left( {2, - 2} \right)\]. Hence, option B is the correct option.
Note: We can also find the midpoint using the section formula. The midpoint formula is a special case of the section formula when a point divides a line segment in 2 equal halves (ratio of 1:1).
According to the section formula, if a point \[\left( {x,y} \right)\] divides a line segment joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\]in the ratio \[m:n\], then \[x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\] and \[y = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\].
We will substitute 1 for \[m\], 1 for \[n\], \[ - 5\] for \[{x_1}\], 9 for \[{x_2}\], 4 for \[{y_1}\] and \[ - 8\] for \[{y_2}\]in the formula \[x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\] and \[y = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\].
\[x = \dfrac{{1 \times 9 + 1 \times \left( { - 5} \right)}}{{1 + 1}} = \dfrac{4}{2} = 2\]
and
\[y = \dfrac{{1 \times 4 + 1 \times \left( { - 8} \right)}}{{1 + 1}} = \dfrac{{ - 4}}{2} = - 2\]
So the coordinates points will be \[\left( {x,y} \right) \equiv \left( {2, - 2} \right)\].
Complete step-by-step answer:
If we have to find the midpoint of a line segment whose end coordinates are given, we can use the midpoint formula. If the end-points of the line segment are \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\]. Then the \[x\]- coordinate of the midpoint will be \[\dfrac{{{x_1} + {x_2}}}{2}\] and \[y\]- coordinate of the midpoint will be \[\dfrac{{{y_1} + {y_2}}}{2}\].
Now we will substitute \[ - 5\] for \[{x_1}\], 9 for \[{x_2}\], 4 for \[{y_1}\] and \[ - 8\] for \[{y_2}\] in the midpoint formula \[\dfrac{{{x_1} + {x_2}}}{2}\] and \[\dfrac{{{y_1} + {y_2}}}{2}\].
\[x = \dfrac{{ - 5 + 9}}{2} = 2\]
\[y = \dfrac{{4 - 8}}{2} = - 2\]
$\therefore $ The midpoint of the line segment is \[\left( {2, - 2} \right)\]. Hence, option B is the correct option.
Note: We can also find the midpoint using the section formula. The midpoint formula is a special case of the section formula when a point divides a line segment in 2 equal halves (ratio of 1:1).
According to the section formula, if a point \[\left( {x,y} \right)\] divides a line segment joining the points \[\left( {{x_1},{y_1}} \right)\] and \[\left( {{x_2},{y_2}} \right)\]in the ratio \[m:n\], then \[x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\] and \[y = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\].
We will substitute 1 for \[m\], 1 for \[n\], \[ - 5\] for \[{x_1}\], 9 for \[{x_2}\], 4 for \[{y_1}\] and \[ - 8\] for \[{y_2}\]in the formula \[x = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\] and \[y = \dfrac{{m{x_2} + n{x_1}}}{{m + n}}\].
\[x = \dfrac{{1 \times 9 + 1 \times \left( { - 5} \right)}}{{1 + 1}} = \dfrac{4}{2} = 2\]
and
\[y = \dfrac{{1 \times 4 + 1 \times \left( { - 8} \right)}}{{1 + 1}} = \dfrac{{ - 4}}{2} = - 2\]
So the coordinates points will be \[\left( {x,y} \right) \equiv \left( {2, - 2} \right)\].
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

