
Mid – point of A (0, 0) and B (1024, 2048) is \[{{A}_{1}}\], mid – point of \[{{A}_{1}}\] and B is \[{{A}_{2}}\]and so on. Co – ordinates of \[{{A}_{10}}\] are: -
(a) (1022, 2044)
(b) (1025, 2050)
(c) (1025, 2046)
(d) (1, 2)
Answer
570k+ views
Hint: Use the mid – point formula given by: -
Co – ordinates of mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, to determine the coordinate of \[{{A}_{1}}\]. Similarly, use the formula to determine the coordinates of \[{{A}_{2}},{{A}_{3}}\] and so on. Form a geometric progression of both x and y – coordinates and use the formula: -
\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], where ‘\[{{S}_{n}}\]’ is the sum of n terms of G.P, ‘a’ is the first term and ‘r’ is the common ratio. Substitute value of ‘n’ equal to 10.
Complete step by step answer:
We have been given two points A (0, 0) and B (1024, 2048). Using the mid – point formula given by: -
Mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, we get,
x – coordinate of \[{{A}_{1}}\] = \[\dfrac{0+1024}{2}=\dfrac{1024}{2}\].
Now, \[{{A}_{2}}\] is the mid – point of \[{{A}_{1}}\] and B, therefore, x – coordinate of \[{{A}_{2}}\],
\[\begin{align}
& =\dfrac{\dfrac{1024}{2}+1024}{2} \\
& =\dfrac{1024}{2}+\dfrac{1024}{{{2}^{2}}} \\
\end{align}\]
On observing the series, we get that x – coordinate of \[{{A}_{3}}\] will be \[\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}\] and so on.
Hence, x – coordinate of \[{{A}_{10}}\] will be,
\[\begin{align}
& =\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}+......+\dfrac{1024}{{{2}^{10}}} \\
& =1024\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
& ={{2}^{10}}\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Clearly we can see that the terms inside the square brackets are in G.P with first term (a) equal to \[\dfrac{1}{2}\] and common ratio (r) = \[\dfrac{\dfrac{1}{{{2}^{2}}}}{\dfrac{1}{{{2}^{1}}}}=\dfrac{1}{2}\].
Now, using the formula of sum of ‘n’ terms of G.P, \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], we get,
\[\begin{align}
& \Rightarrow {{S}_{10}}=\dfrac{1}{2}\left( \dfrac{1-\dfrac{1}{{{2}^{10}}}}{1-\dfrac{1}{2}} \right) \\
& \Rightarrow {{S}_{10}}=\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
\end{align}\]
Therefore, x – coordinate of \[{{A}_{10}}\] will be,
\[={{2}^{10}}\left( 1-\dfrac{1}{{{2}^{10}}} \right)\]
\[={{2}^{10}}-1\]
\[\begin{align}
& =1024-1 \\
& =1023 \\
\end{align}\]
Similarly, forming series of geometric progression for y – coordinate of \[{{A}_{10}}\], we have,
Coordinate of \[{{A}_{10}}\], we have,
\[\begin{align}
& =\dfrac{2048}{{{2}^{1}}}+\dfrac{2048}{{{2}^{2}}}+.....+\dfrac{2048}{{{2}^{10}}} \\
& =2048\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Here also we can see that the terms inside the square brackets are in G.P whose sum we have calculate equal to \[\left( 1-\dfrac{1}{{{2}^{10}}} \right)\].
Therefore, y – coordinate of \[{{A}_{10}}\],
\[\begin{align}
& =2048\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
& =2048\left( 1-\dfrac{1}{1024} \right) \\
& =2048-2 \\
& =2046 \\
\end{align}\]
Therefore, the coordinates of \[{{A}_{10}}\] are (1023, 2046).
So, the correct answer is “Option C”.
Note: One may note that we have been provided with four options here. These options have different x and y – coordinates. So, if we are able to find any of x or y – coordinate then we will get the answer. This will reduce our time to solve this question. But be careful if there are no options or any coordinate of two option matches.
Co – ordinates of mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, to determine the coordinate of \[{{A}_{1}}\]. Similarly, use the formula to determine the coordinates of \[{{A}_{2}},{{A}_{3}}\] and so on. Form a geometric progression of both x and y – coordinates and use the formula: -
\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], where ‘\[{{S}_{n}}\]’ is the sum of n terms of G.P, ‘a’ is the first term and ‘r’ is the common ratio. Substitute value of ‘n’ equal to 10.
Complete step by step answer:
We have been given two points A (0, 0) and B (1024, 2048). Using the mid – point formula given by: -
Mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, we get,
x – coordinate of \[{{A}_{1}}\] = \[\dfrac{0+1024}{2}=\dfrac{1024}{2}\].
Now, \[{{A}_{2}}\] is the mid – point of \[{{A}_{1}}\] and B, therefore, x – coordinate of \[{{A}_{2}}\],
\[\begin{align}
& =\dfrac{\dfrac{1024}{2}+1024}{2} \\
& =\dfrac{1024}{2}+\dfrac{1024}{{{2}^{2}}} \\
\end{align}\]
On observing the series, we get that x – coordinate of \[{{A}_{3}}\] will be \[\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}\] and so on.
Hence, x – coordinate of \[{{A}_{10}}\] will be,
\[\begin{align}
& =\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}+......+\dfrac{1024}{{{2}^{10}}} \\
& =1024\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
& ={{2}^{10}}\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Clearly we can see that the terms inside the square brackets are in G.P with first term (a) equal to \[\dfrac{1}{2}\] and common ratio (r) = \[\dfrac{\dfrac{1}{{{2}^{2}}}}{\dfrac{1}{{{2}^{1}}}}=\dfrac{1}{2}\].
Now, using the formula of sum of ‘n’ terms of G.P, \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], we get,
\[\begin{align}
& \Rightarrow {{S}_{10}}=\dfrac{1}{2}\left( \dfrac{1-\dfrac{1}{{{2}^{10}}}}{1-\dfrac{1}{2}} \right) \\
& \Rightarrow {{S}_{10}}=\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
\end{align}\]
Therefore, x – coordinate of \[{{A}_{10}}\] will be,
\[={{2}^{10}}\left( 1-\dfrac{1}{{{2}^{10}}} \right)\]
\[={{2}^{10}}-1\]
\[\begin{align}
& =1024-1 \\
& =1023 \\
\end{align}\]
Similarly, forming series of geometric progression for y – coordinate of \[{{A}_{10}}\], we have,
Coordinate of \[{{A}_{10}}\], we have,
\[\begin{align}
& =\dfrac{2048}{{{2}^{1}}}+\dfrac{2048}{{{2}^{2}}}+.....+\dfrac{2048}{{{2}^{10}}} \\
& =2048\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Here also we can see that the terms inside the square brackets are in G.P whose sum we have calculate equal to \[\left( 1-\dfrac{1}{{{2}^{10}}} \right)\].
Therefore, y – coordinate of \[{{A}_{10}}\],
\[\begin{align}
& =2048\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
& =2048\left( 1-\dfrac{1}{1024} \right) \\
& =2048-2 \\
& =2046 \\
\end{align}\]
Therefore, the coordinates of \[{{A}_{10}}\] are (1023, 2046).
So, the correct answer is “Option C”.
Note: One may note that we have been provided with four options here. These options have different x and y – coordinates. So, if we are able to find any of x or y – coordinate then we will get the answer. This will reduce our time to solve this question. But be careful if there are no options or any coordinate of two option matches.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

