
Mid – point of A (0, 0) and B (1024, 2048) is \[{{A}_{1}}\], mid – point of \[{{A}_{1}}\] and B is \[{{A}_{2}}\]and so on. Co – ordinates of \[{{A}_{10}}\] are: -
(a) (1022, 2044)
(b) (1025, 2050)
(c) (1025, 2046)
(d) (1, 2)
Answer
584.1k+ views
Hint: Use the mid – point formula given by: -
Co – ordinates of mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, to determine the coordinate of \[{{A}_{1}}\]. Similarly, use the formula to determine the coordinates of \[{{A}_{2}},{{A}_{3}}\] and so on. Form a geometric progression of both x and y – coordinates and use the formula: -
\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], where ‘\[{{S}_{n}}\]’ is the sum of n terms of G.P, ‘a’ is the first term and ‘r’ is the common ratio. Substitute value of ‘n’ equal to 10.
Complete step by step answer:
We have been given two points A (0, 0) and B (1024, 2048). Using the mid – point formula given by: -
Mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, we get,
x – coordinate of \[{{A}_{1}}\] = \[\dfrac{0+1024}{2}=\dfrac{1024}{2}\].
Now, \[{{A}_{2}}\] is the mid – point of \[{{A}_{1}}\] and B, therefore, x – coordinate of \[{{A}_{2}}\],
\[\begin{align}
& =\dfrac{\dfrac{1024}{2}+1024}{2} \\
& =\dfrac{1024}{2}+\dfrac{1024}{{{2}^{2}}} \\
\end{align}\]
On observing the series, we get that x – coordinate of \[{{A}_{3}}\] will be \[\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}\] and so on.
Hence, x – coordinate of \[{{A}_{10}}\] will be,
\[\begin{align}
& =\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}+......+\dfrac{1024}{{{2}^{10}}} \\
& =1024\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
& ={{2}^{10}}\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Clearly we can see that the terms inside the square brackets are in G.P with first term (a) equal to \[\dfrac{1}{2}\] and common ratio (r) = \[\dfrac{\dfrac{1}{{{2}^{2}}}}{\dfrac{1}{{{2}^{1}}}}=\dfrac{1}{2}\].
Now, using the formula of sum of ‘n’ terms of G.P, \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], we get,
\[\begin{align}
& \Rightarrow {{S}_{10}}=\dfrac{1}{2}\left( \dfrac{1-\dfrac{1}{{{2}^{10}}}}{1-\dfrac{1}{2}} \right) \\
& \Rightarrow {{S}_{10}}=\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
\end{align}\]
Therefore, x – coordinate of \[{{A}_{10}}\] will be,
\[={{2}^{10}}\left( 1-\dfrac{1}{{{2}^{10}}} \right)\]
\[={{2}^{10}}-1\]
\[\begin{align}
& =1024-1 \\
& =1023 \\
\end{align}\]
Similarly, forming series of geometric progression for y – coordinate of \[{{A}_{10}}\], we have,
Coordinate of \[{{A}_{10}}\], we have,
\[\begin{align}
& =\dfrac{2048}{{{2}^{1}}}+\dfrac{2048}{{{2}^{2}}}+.....+\dfrac{2048}{{{2}^{10}}} \\
& =2048\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Here also we can see that the terms inside the square brackets are in G.P whose sum we have calculate equal to \[\left( 1-\dfrac{1}{{{2}^{10}}} \right)\].
Therefore, y – coordinate of \[{{A}_{10}}\],
\[\begin{align}
& =2048\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
& =2048\left( 1-\dfrac{1}{1024} \right) \\
& =2048-2 \\
& =2046 \\
\end{align}\]
Therefore, the coordinates of \[{{A}_{10}}\] are (1023, 2046).
So, the correct answer is “Option C”.
Note: One may note that we have been provided with four options here. These options have different x and y – coordinates. So, if we are able to find any of x or y – coordinate then we will get the answer. This will reduce our time to solve this question. But be careful if there are no options or any coordinate of two option matches.
Co – ordinates of mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, to determine the coordinate of \[{{A}_{1}}\]. Similarly, use the formula to determine the coordinates of \[{{A}_{2}},{{A}_{3}}\] and so on. Form a geometric progression of both x and y – coordinates and use the formula: -
\[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], where ‘\[{{S}_{n}}\]’ is the sum of n terms of G.P, ‘a’ is the first term and ‘r’ is the common ratio. Substitute value of ‘n’ equal to 10.
Complete step by step answer:
We have been given two points A (0, 0) and B (1024, 2048). Using the mid – point formula given by: -
Mid – point = \[\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{2},\dfrac{{{y}_{1}}+{{y}_{2}}}{2} \right)\], where \[{{x}_{1}}\] and \[{{x}_{2}}\] are the co – ordinates of A and B respectively and \[{{y}_{1}}\] and \[{{y}_{2}}\] are the y – coordinates of A and B respectively, we get,
x – coordinate of \[{{A}_{1}}\] = \[\dfrac{0+1024}{2}=\dfrac{1024}{2}\].
Now, \[{{A}_{2}}\] is the mid – point of \[{{A}_{1}}\] and B, therefore, x – coordinate of \[{{A}_{2}}\],
\[\begin{align}
& =\dfrac{\dfrac{1024}{2}+1024}{2} \\
& =\dfrac{1024}{2}+\dfrac{1024}{{{2}^{2}}} \\
\end{align}\]
On observing the series, we get that x – coordinate of \[{{A}_{3}}\] will be \[\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}\] and so on.
Hence, x – coordinate of \[{{A}_{10}}\] will be,
\[\begin{align}
& =\dfrac{1024}{{{2}^{1}}}+\dfrac{1024}{{{2}^{2}}}+\dfrac{1024}{{{2}^{3}}}+......+\dfrac{1024}{{{2}^{10}}} \\
& =1024\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
& ={{2}^{10}}\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+\dfrac{1}{{{2}^{3}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Clearly we can see that the terms inside the square brackets are in G.P with first term (a) equal to \[\dfrac{1}{2}\] and common ratio (r) = \[\dfrac{\dfrac{1}{{{2}^{2}}}}{\dfrac{1}{{{2}^{1}}}}=\dfrac{1}{2}\].
Now, using the formula of sum of ‘n’ terms of G.P, \[{{S}_{n}}=\dfrac{a\left( 1-{{r}^{n}} \right)}{\left( 1-r \right)}\], we get,
\[\begin{align}
& \Rightarrow {{S}_{10}}=\dfrac{1}{2}\left( \dfrac{1-\dfrac{1}{{{2}^{10}}}}{1-\dfrac{1}{2}} \right) \\
& \Rightarrow {{S}_{10}}=\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
\end{align}\]
Therefore, x – coordinate of \[{{A}_{10}}\] will be,
\[={{2}^{10}}\left( 1-\dfrac{1}{{{2}^{10}}} \right)\]
\[={{2}^{10}}-1\]
\[\begin{align}
& =1024-1 \\
& =1023 \\
\end{align}\]
Similarly, forming series of geometric progression for y – coordinate of \[{{A}_{10}}\], we have,
Coordinate of \[{{A}_{10}}\], we have,
\[\begin{align}
& =\dfrac{2048}{{{2}^{1}}}+\dfrac{2048}{{{2}^{2}}}+.....+\dfrac{2048}{{{2}^{10}}} \\
& =2048\left[ \dfrac{1}{{{2}^{1}}}+\dfrac{1}{{{2}^{2}}}+......+\dfrac{1}{{{2}^{10}}} \right] \\
\end{align}\]
Here also we can see that the terms inside the square brackets are in G.P whose sum we have calculate equal to \[\left( 1-\dfrac{1}{{{2}^{10}}} \right)\].
Therefore, y – coordinate of \[{{A}_{10}}\],
\[\begin{align}
& =2048\left( 1-\dfrac{1}{{{2}^{10}}} \right) \\
& =2048\left( 1-\dfrac{1}{1024} \right) \\
& =2048-2 \\
& =2046 \\
\end{align}\]
Therefore, the coordinates of \[{{A}_{10}}\] are (1023, 2046).
So, the correct answer is “Option C”.
Note: One may note that we have been provided with four options here. These options have different x and y – coordinates. So, if we are able to find any of x or y – coordinate then we will get the answer. This will reduce our time to solve this question. But be careful if there are no options or any coordinate of two option matches.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

