
Maximum speed of a particle in simple harmonic motion is v$_{\max }$.The average speed of particle in SHM is equal to
A. $\dfrac{{{v_{\max }}}}{2}$
B. $\dfrac{{{v_{\max }}}}{\pi }$
C. $\dfrac{{\pi {v_{\max }}}}{2}$
D. $\dfrac{{2{v_{\max }}}}{\pi }$
Answer
553.2k+ views
Hint:We know that the general equation for a particle performing SHM is $x = A\sin \left( {\omega t + \phi } \right)$. On differentiating we get the equation for velocity $v\left( t \right) = |A\omega \cos \left( {\omega t + \phi } \right)|$. To get the average speed of the particle we integrate this equation for one time period, avg speed $ =
\dfrac{1}{T}\int\limits_0^T {v(t)dt} $.
Complete step by step answer:
We know that the general equation for a particle performing simple harmonic motion is given as $x = A\sin \left( {\omega t + \phi } \right)$.
Where x is the displacement, A is the amplitude, $\omega $ is the angular frequency, $\phi$ is the initial phase and t is time.
Differentiating this equation with respect to time to get the equation for velocity $v\left( t \right) = |A\omega \cos \left( {\omega t + \phi } \right)|$.
To get the average speed of the particle we use the following equation,
avg speed$ = \dfrac{1}{T}\int\limits_0^T {v(t)dt} $.
Substituting the values we get,
avg speed$ = \dfrac{1}{T}\int\limits_0^T {A\omega \cos \left( {\omega t + \phi } \right)} $
We know that time period T can be written as $\dfrac{{2\pi }}{\omega }$.
Therefore the equation becomes,
Avg speed $ = \dfrac{1}{{2\pi /\omega }}\int\limits_0^{\dfrac{{2\pi }}{\omega }} {A\omega \cos \left( {\omega t + \phi } \right)} $
Avg speed $ = \dfrac{{2A\omega }}{\pi }$
Max value of velocity is obtained when $\cos \left( {\omega t + \phi } \right) = 1$ and is equal to ${v_{\max }} = A\omega $
Therefore the average speed of particles in SHM is $ \dfrac{{2{v_{\max }}}}{\pi }$.
Note:For a particle performing SHM the acceleration of the body is directly proportional to the displacement of the body from the mean position. The general equation for displacement of a particle performing simple harmonic motion is $x = A\sin \left( {\omega t + \phi } \right)$. Differentiating this equation we get the equation for velocity with time and acceleration of the particle. Average speed is defined as the rate of change of distance with respect to time. It can be written as a ratio of total distance travelled to the total time taken.
\dfrac{1}{T}\int\limits_0^T {v(t)dt} $.
Complete step by step answer:
We know that the general equation for a particle performing simple harmonic motion is given as $x = A\sin \left( {\omega t + \phi } \right)$.
Where x is the displacement, A is the amplitude, $\omega $ is the angular frequency, $\phi$ is the initial phase and t is time.
Differentiating this equation with respect to time to get the equation for velocity $v\left( t \right) = |A\omega \cos \left( {\omega t + \phi } \right)|$.
To get the average speed of the particle we use the following equation,
avg speed$ = \dfrac{1}{T}\int\limits_0^T {v(t)dt} $.
Substituting the values we get,
avg speed$ = \dfrac{1}{T}\int\limits_0^T {A\omega \cos \left( {\omega t + \phi } \right)} $
We know that time period T can be written as $\dfrac{{2\pi }}{\omega }$.
Therefore the equation becomes,
Avg speed $ = \dfrac{1}{{2\pi /\omega }}\int\limits_0^{\dfrac{{2\pi }}{\omega }} {A\omega \cos \left( {\omega t + \phi } \right)} $
Avg speed $ = \dfrac{{2A\omega }}{\pi }$
Max value of velocity is obtained when $\cos \left( {\omega t + \phi } \right) = 1$ and is equal to ${v_{\max }} = A\omega $
Therefore the average speed of particles in SHM is $ \dfrac{{2{v_{\max }}}}{\pi }$.
Note:For a particle performing SHM the acceleration of the body is directly proportional to the displacement of the body from the mean position. The general equation for displacement of a particle performing simple harmonic motion is $x = A\sin \left( {\omega t + \phi } \right)$. Differentiating this equation we get the equation for velocity with time and acceleration of the particle. Average speed is defined as the rate of change of distance with respect to time. It can be written as a ratio of total distance travelled to the total time taken.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

