
What is the maximum amount of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$ which could be formed from the reaction of ${\text{12}}{\text{.71}}$ g of Al and ${\text{10}}{\text{.09}}$ mol of ${\text{CuS}}{{\text{O}}_{\text{4}}}$?
$....{\text{Al + }}....{\text{CuS}}{{\text{O}}_{\text{4}}} \to ....{\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + }}....{\text{Cu}}$
Answer
539.4k+ views
Hint: In the above question, we have to first balance the chemical equation. Then since we can find out the number of moles of Al, we can find the limiting reagent. According to the limiting reagent, we can find the maximum amount of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$ formed.
Formula Used-
\[{\text{n = }}\dfrac{{\text{m}}}{{\text{M}}}\]
where n= number of moles of the substance
m=given mass of the substance
M=molar mass of the substance.
Complete step-by-step answer:Let us first the equation:
$....{\text{Al + }}....{\text{CuS}}{{\text{O}}_{\text{4}}} \to ....{\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + }}....{\text{Cu}}$
2 Al is present on the product side and only one on the reactant side. So, let us first balance it.
${\text{2Al + CuS}}{{\text{O}}_{\text{4}}} \to {\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + Cu}}$
3 molecules of ${\text{S}}{{\text{O}}_{\text{4}}}$ are present on the product side and one on the reactant side. Now, let us balance both ${\text{S}}{{\text{O}}_{\text{4}}}$ and Cu.
${\text{2Al + 3CuS}}{{\text{O}}_{\text{4}}} \to {\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + 3Cu}}$
This implies that 2 mole of Al reacts with 3 mole of ${\text{CuS}}{{\text{O}}_{\text{4}}}$ to form 1 mole of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$.
Given mass of Al = ${\text{12}}{\text{.71}}$g
Molar mass of Al= 27g
\[{\text{n = }}\dfrac{{\text{m}}}{{\text{M}}}{\text{ = }}\dfrac{{{\text{12}}{\text{.71}}}}{{{\text{27}}}}{\text{ = 0}}{\text{.47}}\]
Since, the amount of ${\text{CuS}}{{\text{O}}_{\text{4}}}$present is excess (${\text{10}}{\text{.09}}$mol). So, the limiting reagent is Al.
2 moles of Al gives 1 mole of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$.
So, \[{\text{0}}{\text{.47}}\]moles of Al gives $\dfrac{{\text{1}}}{{\text{2}}}{{ \times 0}}{\text{.47 = 0}}{\text{.235}}$ moles of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$.
Molar mass of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$= 2${{ \times }}$ atomic mass of Al + 3 ${{ \times }}$ atomic mass of S + 12 ${{ \times }}$ atomic mass of oxygen
= ${{2 \times 27 + 3 \times 32 + 12 \times 16}}$ = ${\text{54 + 96 + 192 = 342}}$
We know that \[{\text{n = }}\dfrac{{\text{m}}}{{\text{M}}}\]
So, rearranging, we get: ${{m = n \times M = 0}}{{.235 \times 342 = 80}}{\text{.37}}$g
Therefore, the weight of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$ formed is ${\text{80}}{\text{.37}}$g.
Note: In these types of questions where mass and moles or any other information is available for all the reactants then we have to first find the limiting reagent and then proceed accordingly.
Formula Used-
\[{\text{n = }}\dfrac{{\text{m}}}{{\text{M}}}\]
where n= number of moles of the substance
m=given mass of the substance
M=molar mass of the substance.
Complete step-by-step answer:Let us first the equation:
$....{\text{Al + }}....{\text{CuS}}{{\text{O}}_{\text{4}}} \to ....{\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + }}....{\text{Cu}}$
2 Al is present on the product side and only one on the reactant side. So, let us first balance it.
${\text{2Al + CuS}}{{\text{O}}_{\text{4}}} \to {\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + Cu}}$
3 molecules of ${\text{S}}{{\text{O}}_{\text{4}}}$ are present on the product side and one on the reactant side. Now, let us balance both ${\text{S}}{{\text{O}}_{\text{4}}}$ and Cu.
${\text{2Al + 3CuS}}{{\text{O}}_{\text{4}}} \to {\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}{\text{ + 3Cu}}$
This implies that 2 mole of Al reacts with 3 mole of ${\text{CuS}}{{\text{O}}_{\text{4}}}$ to form 1 mole of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$.
Given mass of Al = ${\text{12}}{\text{.71}}$g
Molar mass of Al= 27g
\[{\text{n = }}\dfrac{{\text{m}}}{{\text{M}}}{\text{ = }}\dfrac{{{\text{12}}{\text{.71}}}}{{{\text{27}}}}{\text{ = 0}}{\text{.47}}\]
Since, the amount of ${\text{CuS}}{{\text{O}}_{\text{4}}}$present is excess (${\text{10}}{\text{.09}}$mol). So, the limiting reagent is Al.
2 moles of Al gives 1 mole of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$.
So, \[{\text{0}}{\text{.47}}\]moles of Al gives $\dfrac{{\text{1}}}{{\text{2}}}{{ \times 0}}{\text{.47 = 0}}{\text{.235}}$ moles of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$.
Molar mass of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$= 2${{ \times }}$ atomic mass of Al + 3 ${{ \times }}$ atomic mass of S + 12 ${{ \times }}$ atomic mass of oxygen
= ${{2 \times 27 + 3 \times 32 + 12 \times 16}}$ = ${\text{54 + 96 + 192 = 342}}$
We know that \[{\text{n = }}\dfrac{{\text{m}}}{{\text{M}}}\]
So, rearranging, we get: ${{m = n \times M = 0}}{{.235 \times 342 = 80}}{\text{.37}}$g
Therefore, the weight of ${\text{A}}{{\text{l}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}$ formed is ${\text{80}}{\text{.37}}$g.
Note: In these types of questions where mass and moles or any other information is available for all the reactants then we have to first find the limiting reagent and then proceed accordingly.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

