
\[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\] , then the limit is equal to :
A. $\dfrac{1}{{\sqrt \pi }}$
B. $\dfrac{1}{{\sqrt {2\pi } }}$
C. 1
D. 0
Answer
561.3k+ views
Hint: This problem deals with solving the limit with L’Hospital’s rule. The L’Hospital’s rule is applied to a limit when the limit is in indeterminate form. This is done by differentiating the numerator and the denominator and then limit is applied again, which is given by:
$ \Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{f'(a)}}{{g'(a)}}$
Also the value of cosine trigonometric at $\pi $ radians is equal to -1:
$ \Rightarrow \cos \pi = - 1$
The derivative of ${\cos ^{ - 1}}x$ is $\dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$.
Complete step-by-step answer:
Using the L’Hospital’s rule to the given limit.
Consider the given limit, as given below:
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\]
We know that the of $\cos \pi $, when is equal to $ - 1$, which is given below:
$ \Rightarrow \cos \pi = - 1$
Now taking the inverse of cosine on both sides of the equation, as given below:
$ \Rightarrow \pi = {\cos ^{ - 1}}\left( { - 1} \right)$
$\therefore {\cos ^{ - 1}}\left( { - 1} \right) = \pi $
That is when $x$ tends to -1 , then the value of the cosine inverse of $x$ is equal to $\pi $, as shown:
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} {\cos ^{ - 1}}x = \pi $
Now consider the limit of the numerator when $x$ tends to -1 of the given limit \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\]as shown:
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} \]
\[ \Rightarrow \sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}\left( { - 1} \right)} \right)} \]
As we know that $\because {\cos ^{ - 1}}\left( { - 1} \right) = \pi $, hence substituting this value as shown:
\[ \Rightarrow \sqrt \pi - \sqrt \pi = 0\]
So the value of the numerator is zero, when put the value of $x \to - 1$.
Now consider the limit of the denominator of the given limit \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\] as shown:
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \sqrt {\left( {x + 1} \right)} $
$ \Rightarrow \sqrt {\left( { - 1 + 1} \right)} = 0$
So the value of the denominator is zero, when put the value of $x \to - 1$.
Here the both the numerators and the denominator are zero when $x \to - 1$, hence applying the L’Hospital’s rule to the limit \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\] as shown :
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{d}{{dx}}\left( {\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} } \right)}}{{\dfrac{d}{{dx}}\left( {\sqrt {\left( {x + 1} \right)} } \right)}}\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {0 - \dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right)} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}\dfrac{d}{{dx}}\left( {x + 1} \right)}}\]
We know that the derivative of ${\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$, hence substituting it below:
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {0 - \dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\left( {\dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}} \right)} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}\left( {1 + 0} \right)}}\]
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}}}$
Now 2 gets cancelled in both the numerator and the denominator, and substituting the limit of $x \to - 1$:
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{1}{{\sqrt {\left( {{{\cos }^{ - 1}}\left( { - 1} \right)} \right)} }}\left( {\dfrac{1}{{\sqrt {1 - {{\left( { - 1} \right)}^2}} }}} \right)}}{{\dfrac{1}{{\sqrt {\left( {\left( { - 1} \right) + 1} \right)} }}}}$
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt \pi }}\left( {\dfrac{1}{{\sqrt {1 - 1} }}} \right)}}{{\dfrac{1}{{\sqrt {\left( {1 - 1} \right)} }}}}$
Here in the numerator and the denominator the expression $\sqrt {1 - 1} $ gets cancelled, as shown :
$ \Rightarrow \dfrac{1}{{\sqrt \pi }}$
$\therefore \mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }} = \dfrac{1}{{\sqrt \pi }}$
Note:
Please note that in mathematics, more specifically in calculus, L’Hospital’s rule provides a technique to evaluate limits of indeterminate forms. Application of the rule often converts an indeterminate form to an expression that can be easily evaluated by substitution.
$ \Rightarrow \mathop {\lim }\limits_{x \to a} \dfrac{{f(x)}}{{g(x)}} = \dfrac{{f'(a)}}{{g'(a)}}$
Also the value of cosine trigonometric at $\pi $ radians is equal to -1:
$ \Rightarrow \cos \pi = - 1$
The derivative of ${\cos ^{ - 1}}x$ is $\dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$.
Complete step-by-step answer:
Using the L’Hospital’s rule to the given limit.
Consider the given limit, as given below:
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\]
We know that the of $\cos \pi $, when is equal to $ - 1$, which is given below:
$ \Rightarrow \cos \pi = - 1$
Now taking the inverse of cosine on both sides of the equation, as given below:
$ \Rightarrow \pi = {\cos ^{ - 1}}\left( { - 1} \right)$
$\therefore {\cos ^{ - 1}}\left( { - 1} \right) = \pi $
That is when $x$ tends to -1 , then the value of the cosine inverse of $x$ is equal to $\pi $, as shown:
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} {\cos ^{ - 1}}x = \pi $
Now consider the limit of the numerator when $x$ tends to -1 of the given limit \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\]as shown:
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} \]
\[ \Rightarrow \sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}\left( { - 1} \right)} \right)} \]
As we know that $\because {\cos ^{ - 1}}\left( { - 1} \right) = \pi $, hence substituting this value as shown:
\[ \Rightarrow \sqrt \pi - \sqrt \pi = 0\]
So the value of the numerator is zero, when put the value of $x \to - 1$.
Now consider the limit of the denominator of the given limit \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\] as shown:
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \sqrt {\left( {x + 1} \right)} $
$ \Rightarrow \sqrt {\left( { - 1 + 1} \right)} = 0$
So the value of the denominator is zero, when put the value of $x \to - 1$.
Here the both the numerators and the denominator are zero when $x \to - 1$, hence applying the L’Hospital’s rule to the limit \[\mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }}\] as shown :
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{d}{{dx}}\left( {\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} } \right)}}{{\dfrac{d}{{dx}}\left( {\sqrt {\left( {x + 1} \right)} } \right)}}\]
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {0 - \dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\dfrac{d}{{dx}}\left( {{{\cos }^{ - 1}}x} \right)} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}\dfrac{d}{{dx}}\left( {x + 1} \right)}}\]
We know that the derivative of ${\cos ^{ - 1}}x = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$, hence substituting it below:
\[ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\left( {0 - \dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\left( {\dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}} \right)} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}\left( {1 + 0} \right)}}\]
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{1}{{2\sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}\left( {\dfrac{1}{{\sqrt {1 - {x^2}} }}} \right)}}{{\dfrac{1}{{2\sqrt {\left( {x + 1} \right)} }}}}$
Now 2 gets cancelled in both the numerator and the denominator, and substituting the limit of $x \to - 1$:
$ \Rightarrow \mathop {\lim }\limits_{x \to - 1} \dfrac{{\dfrac{1}{{\sqrt {\left( {{{\cos }^{ - 1}}\left( { - 1} \right)} \right)} }}\left( {\dfrac{1}{{\sqrt {1 - {{\left( { - 1} \right)}^2}} }}} \right)}}{{\dfrac{1}{{\sqrt {\left( {\left( { - 1} \right) + 1} \right)} }}}}$
$ \Rightarrow \dfrac{{\dfrac{1}{{\sqrt \pi }}\left( {\dfrac{1}{{\sqrt {1 - 1} }}} \right)}}{{\dfrac{1}{{\sqrt {\left( {1 - 1} \right)} }}}}$
Here in the numerator and the denominator the expression $\sqrt {1 - 1} $ gets cancelled, as shown :
$ \Rightarrow \dfrac{1}{{\sqrt \pi }}$
$\therefore \mathop {\lim }\limits_{x \to - 1} \dfrac{{\sqrt \pi - \sqrt {\left( {{{\cos }^{ - 1}}x} \right)} }}{{\sqrt {\left( {x + 1} \right)} }} = \dfrac{1}{{\sqrt \pi }}$
Note:
Please note that in mathematics, more specifically in calculus, L’Hospital’s rule provides a technique to evaluate limits of indeterminate forms. Application of the rule often converts an indeterminate form to an expression that can be easily evaluated by substitution.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

