
Match the column I with Column II
Column I(Physical Quantity) Column II(Dimensional formula) A) Permittivity of free space p) $\left[ {{M^0}{L^0}{T^{ - 1}}} \right]$ B) Radiant flux q) $\left[ {M{L^3}{T^{ - 3}}{A^{ - 2}}} \right]$ C) Resistivity r) $\left[ {M{L^2}{T^{ - 3}}} \right]$ D) Hubble constant s) $\left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$
1) A-p, B-q, C-r, D-s
2) A-q, B-p, C-s, D-r
3) A-s, B-r, C-q, D-p
4) A-r, B-s, C-q, D-p
| Column I(Physical Quantity) | Column II(Dimensional formula) |
| A) Permittivity of free space | p) $\left[ {{M^0}{L^0}{T^{ - 1}}} \right]$ |
| B) Radiant flux | q) $\left[ {M{L^3}{T^{ - 3}}{A^{ - 2}}} \right]$ |
| C) Resistivity | r) $\left[ {M{L^2}{T^{ - 3}}} \right]$ |
| D) Hubble constant | s) $\left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$ |
Answer
584.4k+ views
Hint: The dimensions used for the fundamental quantities are as follows
Mass $[M]$
Length $[L]$
Time $[T]$
Current $[A]$
Complete step by step answer:
The expression for permittivity of free space is given as,
${\varepsilon _0} = \dfrac{{{q_1}{q_2}}}{{4\pi F{r^2}}}$
Dimensions of force, $\left[ F \right] = \left[ {ML{T^{ - 2}}} \right]$
Dimensions of charge, $\left[ q \right] = \left[ {AT} \right]$
Dimension of radius, $\left[ r \right] = \left[ L \right]$
Substituting all these dimensions for the dimension of permittivity of free space,
$
\left[ {{\varepsilon _0}} \right] = \dfrac{{\left[ {AT} \right]\left[ {AT} \right]}}{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}} \\
= \dfrac{{\left[ {{A^2}{T^2}} \right]}}{{\left[ {M{L^3}{T^{ - 2}}} \right]}} \\
= \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right] \\
$
Dimension of permittivity of free space, $\left[ {{\varepsilon _0}} \right] = \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$
Radiant flux is the radiant energy transmitted per unit time. This is denoted as ${\phi _e}$ and is measured in Watt. And Watt is the unit of power. Hence the dimension of Radiant flux is the dimension of power.
Power=Force$ \times $ Velocity
Dimension of Force, $\left[ F \right] = \left[ {ML{T^{ - 2}}} \right]$
Dimension of Velocity,$\left[ V \right] = \left[ {L{T^{ - 1}}} \right]$
Substituting all these dimensions for the dimension of Radiant flux,
Dimension of Radiant flux,
$
\left[ {{\phi _e}} \right] = \left[ {ML{T^{ - 2}}} \right]\left[ {L{T^{ - 1}}} \right] \\
= \left[ {M{L^2}{T^{ - 3}}} \right] \\
$
Thus, the Dimension of Radiant flux, $\left[ {{\phi _e}} \right] = \left[ {M{L^2}{T^{ - 3}}} \right]$
The expression for the resistivity is given as,
$\rho = \dfrac{{RA}}{l}$
Where,$R$ is the resistance, $A$is the area and $l$is the length.
And the expression for Resistance is given as,
$R = \dfrac{V}{I}$
Where, $V$ is the voltage and $I$ is the current.
The voltage is the work done per unit charge. Hence the expression for voltage is given as,
$V = \dfrac{W}{q}$
Therefore, Resistance can be expressed as, $R = \dfrac{W}{{Iq}}$
Dimension of work done, $\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Dimension of charge, $\left[ q \right] = \left[ {AT} \right]$
Dimension of current, $\left[ I \right] = \left[ A \right]$
Substitute all these dimensions for the dimension of resistance.
$
\left[ R \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]\left[ A \right]}} \\
= \left[ {M{L^2}{T^{ - 3}}{A^{ - 2}}} \right] \\
$
Dimension of Area, $\left[ A \right] = \left[ {{L^2}} \right]$
Dimension of length, $\left[ l \right] = \left[ L \right]$
Substitute all these dimensions for the dimension of resistivity,
$
\left[ \rho \right] = \dfrac{{\left[ {M{L^2}{T^{ - 3}}{A^{ - 2}}} \right]\left[ {{L^2}} \right]}}{{\left[ L \right]}} \\
= \left[ {M{L^3}{T^{ - 3}}{A^{ - 2}}} \right] \\
$
Dimension of resistivity,$\left[ \rho \right] = \left[ {M{L^3}{T^{ - 3}}{A^{ - 2}}} \right]$
Hubble constant is the unit of measurement for describing the expansion of the universe.
The expression for Hubble constant is given as,
$H$ = (Velocity/Distance)
Dimension for velocity,$\left[ V \right] = \left[ {L{T^{ - 1}}} \right]$
Dimension for distance,$\left[ l \right] = \left[ L \right]$
Substitute all these dimensions for the dimension of Hubble constant.
$
\left[ H \right] = \dfrac{{\left[ {L{T^{ - 1}}} \right]}}{{\left[ L \right]}} \\
= \left[ {{T^{ - 1}}} \right] \\
$
Dimension of Hubble constant,$\left[ H \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]$
So, the correct answer is option 3.
Note:
Dimensions of a physical quantity are the powers to which the base quantities are raised to represent that quantity. The dimension can be found from the unit of the quantity measured. If any fundamental quantity is absent then the power will be zero in the dimensional formula.
Mass $[M]$
Length $[L]$
Time $[T]$
Current $[A]$
Complete step by step answer:
The expression for permittivity of free space is given as,
${\varepsilon _0} = \dfrac{{{q_1}{q_2}}}{{4\pi F{r^2}}}$
Dimensions of force, $\left[ F \right] = \left[ {ML{T^{ - 2}}} \right]$
Dimensions of charge, $\left[ q \right] = \left[ {AT} \right]$
Dimension of radius, $\left[ r \right] = \left[ L \right]$
Substituting all these dimensions for the dimension of permittivity of free space,
$
\left[ {{\varepsilon _0}} \right] = \dfrac{{\left[ {AT} \right]\left[ {AT} \right]}}{{\left[ {ML{T^{ - 2}}} \right]\left[ {{L^2}} \right]}} \\
= \dfrac{{\left[ {{A^2}{T^2}} \right]}}{{\left[ {M{L^3}{T^{ - 2}}} \right]}} \\
= \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right] \\
$
Dimension of permittivity of free space, $\left[ {{\varepsilon _0}} \right] = \left[ {{M^{ - 1}}{L^{ - 3}}{T^4}{A^2}} \right]$
Radiant flux is the radiant energy transmitted per unit time. This is denoted as ${\phi _e}$ and is measured in Watt. And Watt is the unit of power. Hence the dimension of Radiant flux is the dimension of power.
Power=Force$ \times $ Velocity
Dimension of Force, $\left[ F \right] = \left[ {ML{T^{ - 2}}} \right]$
Dimension of Velocity,$\left[ V \right] = \left[ {L{T^{ - 1}}} \right]$
Substituting all these dimensions for the dimension of Radiant flux,
Dimension of Radiant flux,
$
\left[ {{\phi _e}} \right] = \left[ {ML{T^{ - 2}}} \right]\left[ {L{T^{ - 1}}} \right] \\
= \left[ {M{L^2}{T^{ - 3}}} \right] \\
$
Thus, the Dimension of Radiant flux, $\left[ {{\phi _e}} \right] = \left[ {M{L^2}{T^{ - 3}}} \right]$
The expression for the resistivity is given as,
$\rho = \dfrac{{RA}}{l}$
Where,$R$ is the resistance, $A$is the area and $l$is the length.
And the expression for Resistance is given as,
$R = \dfrac{V}{I}$
Where, $V$ is the voltage and $I$ is the current.
The voltage is the work done per unit charge. Hence the expression for voltage is given as,
$V = \dfrac{W}{q}$
Therefore, Resistance can be expressed as, $R = \dfrac{W}{{Iq}}$
Dimension of work done, $\left[ W \right] = \left[ {M{L^2}{T^{ - 2}}} \right]$
Dimension of charge, $\left[ q \right] = \left[ {AT} \right]$
Dimension of current, $\left[ I \right] = \left[ A \right]$
Substitute all these dimensions for the dimension of resistance.
$
\left[ R \right] = \dfrac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {AT} \right]\left[ A \right]}} \\
= \left[ {M{L^2}{T^{ - 3}}{A^{ - 2}}} \right] \\
$
Dimension of Area, $\left[ A \right] = \left[ {{L^2}} \right]$
Dimension of length, $\left[ l \right] = \left[ L \right]$
Substitute all these dimensions for the dimension of resistivity,
$
\left[ \rho \right] = \dfrac{{\left[ {M{L^2}{T^{ - 3}}{A^{ - 2}}} \right]\left[ {{L^2}} \right]}}{{\left[ L \right]}} \\
= \left[ {M{L^3}{T^{ - 3}}{A^{ - 2}}} \right] \\
$
Dimension of resistivity,$\left[ \rho \right] = \left[ {M{L^3}{T^{ - 3}}{A^{ - 2}}} \right]$
Hubble constant is the unit of measurement for describing the expansion of the universe.
The expression for Hubble constant is given as,
$H$ = (Velocity/Distance)
Dimension for velocity,$\left[ V \right] = \left[ {L{T^{ - 1}}} \right]$
Dimension for distance,$\left[ l \right] = \left[ L \right]$
Substitute all these dimensions for the dimension of Hubble constant.
$
\left[ H \right] = \dfrac{{\left[ {L{T^{ - 1}}} \right]}}{{\left[ L \right]}} \\
= \left[ {{T^{ - 1}}} \right] \\
$
Dimension of Hubble constant,$\left[ H \right] = \left[ {{M^0}{L^0}{T^{ - 1}}} \right]$
So, the correct answer is option 3.
Note:
Dimensions of a physical quantity are the powers to which the base quantities are raised to represent that quantity. The dimension can be found from the unit of the quantity measured. If any fundamental quantity is absent then the power will be zero in the dimensional formula.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

