
What mass of steam at ${{100}^{\circ }}C$ must be mixed with 150g of ice at melting point in a thermally insulated container to produce liquid water is:
A: 40g
B: 150g
C: 30g
D: 100g
Answer
574.2k+ views
Hint: To solve this problem, we have to calculate the energies of the elements that are relative to ice that is ${{0}^{\circ }}C$of water. Since the container is thermally insulated, there is no heat loss. Hence, the heat needed to melt ice and raise water temperature is the same as the heat needed to transfer steam to water and cool it.
Formula used:
$Q=mL$ where Q is the heat energy absorbed per mass m and L is the latent heat of the material.
$Q=mc\Delta T$ where Q is the heat energy absorbed per mass m, c is the specific heat of the material and $\Delta T$ is the change in material.
Complete step by step solution:
In the question, we are given that mass of steam at ${{100}^{\circ }}C$ is to be mixed with 150g of ice at melting point in a thermally insulated container. From the given conditions we can infer that the heat energy absorbed per mass by both ice and steam are the same that is,
${{Q}_{ice}}={{Q}_{steam}}$
$
{{Q}_{ice}}={{L}_{f}}{{m}_{i}}+{{m}_{i}}{{c}_{w}}\Delta T \\
=0.15kg\times .333\dfrac{KJ}{kg}+0.15kg\times 4.187\dfrac{KJ}{kg.K}\times 60=87.6KJ \\
$
${{Q}_{steam}}={{L}_{v}}.{{m}_{s}}+{{m}_{s}}{{c}_{w}}\Delta T$
We know that ${{Q}_{ice}}={{Q}_{steam}}$
Combining the equations, we get
$
{{Q}_{ice}}={{L}_{v}}.{{m}_{s}}+{{m}_{s}}{{c}_{w}}\Delta T \\
={{m}_{s}}({{L}_{v}}+{{c}_{w}}\Delta T) \\$
$\therefore{{m}_{s}}=\dfrac{{{Q}_{ice}}}{({{L}_{v}}+{{c}_{w}} T)}$=$\dfrac{87.6kJ}{2256\dfrac{KJ}{kg}+4.187\dfrac{KJ}{kg.K}\times 60}=30g \\
$
Hence, the required mass of steam is 30g.
So, the correct answer is “Option C”.
Note:
Latent heat of ice is termed as latent heat of fusion and latent heat of steam is termed as latent heat of vaporisation.
Also, the standard values of the specific heat and the latent heat is being used in our question.
we can infer that the heat energy absorbed per mass by both ice and steam are the same.
Formula used:
$Q=mL$ where Q is the heat energy absorbed per mass m and L is the latent heat of the material.
$Q=mc\Delta T$ where Q is the heat energy absorbed per mass m, c is the specific heat of the material and $\Delta T$ is the change in material.
Complete step by step solution:
In the question, we are given that mass of steam at ${{100}^{\circ }}C$ is to be mixed with 150g of ice at melting point in a thermally insulated container. From the given conditions we can infer that the heat energy absorbed per mass by both ice and steam are the same that is,
${{Q}_{ice}}={{Q}_{steam}}$
$
{{Q}_{ice}}={{L}_{f}}{{m}_{i}}+{{m}_{i}}{{c}_{w}}\Delta T \\
=0.15kg\times .333\dfrac{KJ}{kg}+0.15kg\times 4.187\dfrac{KJ}{kg.K}\times 60=87.6KJ \\
$
${{Q}_{steam}}={{L}_{v}}.{{m}_{s}}+{{m}_{s}}{{c}_{w}}\Delta T$
We know that ${{Q}_{ice}}={{Q}_{steam}}$
Combining the equations, we get
$
{{Q}_{ice}}={{L}_{v}}.{{m}_{s}}+{{m}_{s}}{{c}_{w}}\Delta T \\
={{m}_{s}}({{L}_{v}}+{{c}_{w}}\Delta T) \\$
$\therefore{{m}_{s}}=\dfrac{{{Q}_{ice}}}{({{L}_{v}}+{{c}_{w}} T)}$=$\dfrac{87.6kJ}{2256\dfrac{KJ}{kg}+4.187\dfrac{KJ}{kg.K}\times 60}=30g \\
$
Hence, the required mass of steam is 30g.
So, the correct answer is “Option C”.
Note:
Latent heat of ice is termed as latent heat of fusion and latent heat of steam is termed as latent heat of vaporisation.
Also, the standard values of the specific heat and the latent heat is being used in our question.
we can infer that the heat energy absorbed per mass by both ice and steam are the same.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

